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Foreword

There has always been increasing practical motivation fcr
study of 1ight scattering in seawater, despite the fact that
this field sometimes seems to be merely speculative. Overall,
this phenomenon reflects a characteristic of seawater which 1is
essential from the standpcint of sedimentology or geochemistry,
or again, piology: the concentration of particulate matter in
suspension. gecattering is actually a spatial redistribution of
energy wuich does not proceed by chance, put rather 1in conformity,
with a law which precisel” describes the ngcattering indicatrix.”
Determination of this factcr, in conjunction with 1ts theoretical
interpretation, permits the possibility of obtaining jnformation
on the particles and theilr properties which will complement that
obtained with somewhat greater gifficulty by direct observation.

In addition, all problems of oceanographlc optics, including
the propagation, or more generally, the radiative transfer of
radiation, and the destruction of contrasts, that is, of images

-- whether greated experimentally or theoretically -- all these
problems imply & knowledge of the index of diffusion. Some cases
involve the influence of properties such as sackscattering or scat-
fgering, on the other hand, in the vicinity of the direction of
propagation, which are difficult to evaluate by simple experi-
mentation; in these cases, theoretical analysis may pe of equal

or even greater value.

The following text 1s divided into three principal parts.
The first deals solely with experimental findings, while the
second indicates now theory may pe used and how it 1is expressed.
Finally, the third part deals conjointly with the experimental
and thecretical results and is directed toward thelr interpreta-
tion and application.

In order toO simplify the text itself, definitions and
certain numerical aspects of the computations performed on a
computer are dealt with in two appendices. Similarly,

to avold overburdening the pibliography, references to original
works relatlng to those designated under the theories of Raylelgh,
Rayleigh—Gans and Mie have peen omitted. A1l these references

are 1n effect replaced by & single entry: the now-

classical work py H.C. Van de Hulst (1957)s which encompasses
them all.

Note: Each figure is given two numbers, the first belng
I, I1 or 111, depending oOn whether 1t appears in the first,
second or third part. Equations are pumpered only in the
second part, agein with two figures, the first being 1, 2 or 3,
depending on whether they appear in Chapter 1, 2 Or 3 of this
part.

PRECFDING PAGE BLANK NOT FILMED
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LIGHT SCATTERING IN SEAWATER.
EXPERIMENTAL RESULTS AND THEQRETICAL APPROACH

André Morel
University of Paris, Physical Oceanography Laboratory,
Center of Qceanographic Research, Villefranche—sur—Mer

The propagation of light radiation in any medium other than
a vacuum 1is accompanied by two phenomena which determine the
attenuation of the flux: absorption and scattering. The energy
absorbed 1s converted 1into heat, or may be partially re-emitted
py fluorescence or the Raman effect, but with a change in
wavelength. The scattered energy, on the other hand, is not
transformed, put is merely dispersed in space. If the medium

is "optically pure," scattering 1is provoked by the molecules
themselves and by them alone. In "3isturbed" mediums,

scattering of particles in suspension is added to the molecular
scatterinz. Even in its purest state, seawater behaves as an
optically disturbed medium for visible radiation; as 2 result,
it will be necessary to examine the respective roles of molecular
scattering and particle scattering with reference to each
problem considered, whether it concerns tne total seattering
coefficient or the volume scattering function, the shape of the
indicatrix, selectivity, or polarization.

|
Introduction /3.1=-4%

A1l the useful definitions are given in appendix 1.

1. Scattering Indicatrix of Seawater »

1.1. General Shape

During the same year (1963), N.G. Jerlov and S.Q. Duntley
in‘ependently made systematic reviews of the scattering indicatrix
measurements for seawater which had been performed SO far.

The results compared DY these investigators were obtained
with different devices, some operating in situ and others
necessitating sampling and decanting of the sample; some made

use of white light and others of filtered radiation (blue,
blue-green, greer, yellow); moreover, the results concerned water
with extremely diverse characteristics as to turbidity and origin
(Pacific Ocean, At.lantic Ocean, English Channel, China Sea, and
even lakes). Reachlng identical conclusions at the end of this
comparison, N.G. Jerlov and S.Q. Duntley noted the very significant
fact {1lustrated by Fig. I.1: all the measurements are in agree- "
ment for angles less than 90°, thus showing that the shape

#Numbers in the margin indicate pagination in the foreign text.
Hereafter, only the final digit(s) -- {.e. after the dash -- will
pe indicated.
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of the scattering indicatrix varies 1little from one type of seawater

to the next and is extremely asymmetrical in all cases. For
angles greater than 90° greater dispersion may be noted. In
another connection, the angle at which scattering is minimal
varles from approximately 100° to 130° depending on the case,
the minimum itself being more or less marked.

Fig. I.1. Scattering indicatrices obtalned by various

investigators, normalized to 90°.

H: E.O. Hulburt (1945), Chesapeake Bay;
K: M. Kozlianinov (1957), China Sea;

S: T. Sasaki (196Q), Japanese trench;

J: N.G. Jerlov (1961), Atlatic (Madeira);
[Caption continued on following page.]

-
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Fig. I.1, continued:

T1/To: J.E. Tyler (1961), Pacific (San Diego);
D: S.Q. Duntley (1963), Lake Winnipesakee;
O0: Y.E. Otchakovski (1965), Mediterranean

It should be noted that the measurements made by Pickard
and Glovando (1960) on water which may afford 2 special case
(fjord of British Columbia) diverge considerably from the overall
results, the increase toward small angles being more marked.
The measurements made by Sasaki et al. (1960) also diverge from
the other findings to some degree since they reveal slight
undulations. Mankovsky et al. (1970) have also detected such
speclal characteristics. p, 4 very general manner, however,
Subsequent analyses have consistently confirmed the broad ten-

dencies qrawn from an examination of these initial measure-
ments.

1.2. Possible Variations at Mean Angles (6 > 30°)

In reality, a large number of tests performed on water
of much more varied type from the standpoint of clearness have
revealed that the snhape of the indicatrix for seawater may
vary considerably within the range of mean angles. Figure

1t 1s 2also necessarv to show changes in shape without bringing the
magnitude of the indicatrix into play). Without giving a
large number of eéxamples, Fig. I.?2 roughly summarizes the
variations in the indicatrix which may occur within this range
of angles. Curve 3 shows the most symmetrical shape

which could be Observed, corresponding to extremely pure deep
water (ldentical shapes have been obtained below 1000
or 2000 meters both in the Eastern Mediterranean -- laboratory
team, 1969 -- and in the Madeira reglon); curve 2 is an inter-
mediate curve which 1is frequently observed with reference to
the "blue" surface water of oceans; and curve 1 is the pre-
dominant curve for a number of types of surface water and
coastal waters. The asymmetry is sllghtly more marked for

the waters of the Paltic Sea (Station 2, G. Kullenberg (1967),
bgsos = 0.76p.1). Curve 5 based on measurements made

by %.J. Petzold (1972) falis between cases 2 ang 3.

Systematic aunalysis of the snape of the indicatrix leuads to

the following conclusion: between the two extreme cases shown,
t *“ 1s, from the extremely asymmetrical shapes such as
th of curve 1 to the most symmetrical shane, that of curve 3,

the arious Intermediate shapes for the indicatrix are not
randomly distributed. The tendency toward Symmetry actually occu

/5

rs

/6
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Fig. I.o2. Indicatrices lormalized to ggo,
1. English channel (surface, Roscofr, 6/29/63,
b > 0.6 m-1, ) = 546 nm);
2. Mediterranean (surface, Villefranche Bay,
11/16/63, b ~ 0.1 m=1, "\ = 546 nm) ;
3. Mediterranean (1500 m Tyrrhenian Sea,
[721/64, b n 0.015 n-1, Y = che nm) ;
(see also 4. Morel, 1965);
4. Baltic Ses (5 m, Station 2, 6/13/67,
b =10.76 m=1, )} = 555 nm, G. Kullenberg, 1967);
5. Atlantic (1500 m, Tongue of the Ocean, 7/13/71,
b =0.037 m~1, x\’="515 nm, T.J. Petzold, 1972).
Black points and circles stations,1 ang 2 respectively
(T1 and T» of the breceding figure.) (Pacific, J.E.
Tyler, 1921).

of indicatrices Was checkegd by tests of more than 15¢ Samples
taken fronm wldely separateq areas (English Channel, Atlantic
Ocean, Mediterranean Ocean, Indian Ocean). The most markad
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Fig. I.3. B(45°)/8(135°) ratio characterizing the asymmetry of
the indicatrix for ceawater, expressed as a functicn of B(90°)
for various types of seawater (A = 546 nm). From the expression
relating B(8) to B(90°), this ratio can easily be found to
be:

B(45) _ R(45) (B(90) + Const

g(135) R(135) (B(90) + Const

and varies with B8(90) according to a hyperholic law. Two hyper-
bolas are plotted on the basis of the average values (upper curve)
or extreme values (lower curve) &assigned to R(45) and R(135).

Key: a. Western Mediterranean
b. Eastern Mediterranean
c. Indian Ocean
d. English Channel

on the order of 12 to reach values as low as 2 when the water
changes from an extremely scattered state to extreme clearness.
In Fig. I.3 and in all subsequent cases the_unit indicated for
the volume functions is m-l, and not m~l steradian-l, as
it should more properly be stated (this expression remains
understood and was omitted for convenlence).

Since turbld waters show relatively similar and extremely
asymmetrical indicatrices, since only '"clear'" waters result in

varied and more symmetrical shapes, it 1is logical to
attribute this change at least partially to the more or less
sizable role of molecular scattering. The effect of this factor




must be known in order to proceed to a study of the residual
variations,which themselves would thus be attributed solely to
the particles.

Thls point may be studied in a simple manner without the
additional necessity of knowing the characteristic values for
molecular scattering (A. Morel, 1965). By using the indices p
and o Lo designate the respective parts attributable to scat-
tering of particles and of the water itself, 1t is possible
to break down the volume scattering functions at 6 and at 90° :

8(8) = sp (6) + B, (6) 8(g0) = sp (90) + B, (90)

and from this to formulate the equation:

8 (8)

g (8) -5 ()= ET50) (e (90) = 8 (90))

If for various samples B(8) is used as a function of B(90), the
distribution of experimental polints can be found to occur
generally in linear fashion. This means that the equation

B (6)/8p(90) = R(8) is relatively constant on a first approxima-
tlon and characterizes scattering by the particles alone.
It should be added that if the “lnearity 1is unchanged for water with
a high scattering capability,this line should pass through a
figurative point corresponding to optically pure water, with the
coordinates Bo(8) - B5(90) (the value for By(90) may be estimated

indirectly and approximately in this way). Figure I.4 shows
examples of this procedure.

Computation of regression1 reveals that the correlation /7
coefficient, which 1s high for small angles (greater than 0.56),
is  considerably lower for large angles (J.86 at 150°), tnus
showing that sizable variations occur only in the particle in-
dicatrix and not in that for seawater (water + particles). (n the other
hand, the values for the average gradients, that is, the various
values for R(8), are not significantly di fferent for the three
lengths considered. Using R(6) as a function of 8, one obtains
a representation of the "mean" indicatrix for the particles
alone (see Figs. I.6, I.9 and LII.7 in Part 3). Indicatrices for
turbid water do actually tend toward this form of
maximum asymmetry; examples borrowed from V.W. Reese and

]Performed for A = 546 nm at a maximum for 112 values ard for
A = 436 and 366 nm at a maximum for 26 values (36 values for
the specific angles 45 and 135°). Some points diverge very
considerably from the linear configuration. Usually, but not
necessarily, these correspond to coastal samples which are
probably loaded with terrigeneous rarticles. No systematic
study of these deviations has heen made so far.
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Fig. I.4. Pocints representing various samples obtained for wave-
lengths 436 and 3¢6 nm and two angles 6, 45° and 13.°, using

B(8) as a function of £(90). These figures complement those
previously given for X = 546 nm (A. Morel, 1965). They deal with
various types of seawater: seven samples from the English Crannel,
15 from the Mediterranean (easterr. and western), five from the
Atlantic (Madeira region), and nine from the Indian Ocean
(Madagascar region). The circles represent optically pure water
(ef. Section 2.1).

S.P. Tucker (1970) are an excellent illustration from this stand-
point (cf. Fig. I.6). Two observations should be made with respsct to
to this curve: due to the fact that it 1s a mean curve,

there are some speclal cases which it represents very imper-
fectly, and in addltion, in this mean, particles present in
turbld water are favored to some extent (since the computed R(6)
equations are extremely dependsnt on the most highly separated
points corresponding to water with the highest scattering capability).
These polnts will be re-examined later (Section 3.1).
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Scales are logarithmic). The positioning of the curves
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.Q. Duntley (1963);
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.E. Otchakovski (1965);

Kozlianinov (1957);

Kullenberg (1968);

Bauer, A. Morel (1967);

Nyffeler (1970);

8: T.J. Petzold (1972), Station 5 (Pucific) and

Station 8 (Atlantic), respectively; that is,
respectively, the most scattered water (b =

= 9.27 m-l) and the clearest water (b = 0.037
m~+)considered by this Investigator (aside
from port water.




€Xponent differys from 4 arises basically from the dispersion
of the indicatrix.

TABLE T, THEORETICAL VALUES FOR B,(90) AND bo AS A FUNCTION op 9
He THE OTHER = VvOLUME FUNCTTONS Bo(8) MAY RE DEDUCED ==

FROM g,(90) By MEANS OF THE EXPRESSION BELoy. INTEGRATION oF

THé‘.S SAME EXPRESSION OVER THE ENTIRE SPACE, WHICH LEADs TO b =

= 3 B,(90) %%g, MAKES 1T POSSIBLE mg CO?PUTE bo (6 Is ASSUMED
AL TO 0.09).

s EE %sl 520 | 515 | oo

-~ =1 =

m

LTﬁ 16811J2;O&3’0J8 0.68

Van o
RS S GO B ’

i
17.9 k9 | 12,5

i
|
. ,’,‘,__\_-;_. —

2L 2.25( 1.%0

Scatteringis highest for solutions, Since in this case an

ldeal solutions, from the molecular welght of the solute and the
incr%nnent in the indicatrix broduced by its Presence. 1In this way

Scattering g €Specially likely to play a Slgnificant rcle for
the ta1] end, €Speclally where the indicatriy is at a minimum,
toward 129 or 140°, When the water ig turbid, the relative

the measurementsg available, with the understanding that the
possibility of the eéxistence nf clearer water 1s in no way

11




-{\ B (8)/B (90) A Bi90) 84900 BHO) | b
\\

f s (o 7

1) 546 140 032 108 | 0016 | 28.7-64 Tyuh.
2) 436 | 222 044 278 | 0025 |Brofond. 164N
366 | 640 053 587 | 0031 | 1000m 1417

546 156 145 1) 065 | _5-6-64 Monche|D
436 220 192 28 0.87 | profond. 450N
366 290 231 59 1,03 20m 4COE

Fig. I.7. Indicatrices normalized to 909, Measurements
performed at three wavelengths on one sample of turbid
seawater (English Channel) and on another very clear
sample {(Tyrrhenian Sea).

Key: a. Depth
b. English Channel

The curve in Fig. I.2 or curves 1, 2 and 3 in Fig. I.7 are /10
representative examples of deep clear water. In this connection,
it 1s possible at each angle to form the ratio? Bo(8)/8(6) of
the molecular scattering to the scattering (total) observed for
one of these typical cases (that of Fig. I.7), where the indicatrix
is determined at three wavelengths. One thus obtains the ratios

Rather than using *“he theoretical values given in Table I,
experimental values obtained 1n tests of purified seawater (A.
Morel, 1968) were used to form this ratio; these values were
slightly lower (approximately 10%). This was deemed preferable
since measurements of both the purified water and the sample
were performed with the same device and under the same conditions;

uncertainty in regard to the absolute values is elliminated in
the ratio.

12
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L B(0) x‘“.//"”"”—s 9 function of the scatter-
L /./f‘_‘ ing angle. Due to the :
//fﬁ . pronounced selectivity 1
i . /// \ of molecular scattering, !
] * the relative importance :
/f///’//éMnm of the latter increases
ok /., ¢ . as the wavelength de- i
A b |[by/b !
,//)/ (om) | 102m | Oy creases, and in all cases |
A 546 16 0 it is at an effective !
'///; 436 25 18 maximum for angles between
¢ 366 1 % 90° and 140°. The total
%/' i molecular scattering co-
o o460 | 25 | M efficlent by can thus be
L ) o ] : ! compared to the coefficient
30 60 %0 120 150 b of the sample (computed
from B(30°), cf. Section
Fig. I.8. Relative importance of 6). In the case of this
molecular scattering as a function extremely pure water, the i
of angle. The curves, representing ratio bg/b would increase ?
three wavelengths, are based on 10% for A = 546 nm and
the sample from the Tyrrhenian 30% for X = 366 nm. It
Sea (ef. Fig. I.7). The small should be added that
circlez are deduced from the meas- similar results have also
urements made by G. Kullenberg been obtained in the
(1968) in the Sargasso Sea (10 m) Eastern Mediterranean
at wavelength 460 nm. (laboratory team, 1969) .

and in the Atlantic in

the Madeira region,
generally at depths greater than 1007 m, while analogous values
may be deduced from the measurements made by G. Kullenberg (1968)
at only 10 meters, but in the Sargasso Sea, providing definitive
proof of the high purity of the waters of this ses.

3. Particle Scattering Indicatrix

3.1. Results

A "mean" indicatrix was obtained by an indirect procedure,
which, 1t should be recalled, is probably more representative
of the particles present in turbid water (Section 1.2). The pars
ticle indicatrices may be determined, case by case, by subtracting

3 Here again problems arise in attempting to analyze clear water.

On the basis of the statements which have just been made, the -
part Bo(8) to be subtracted is preponderant for mean angles.

Thus the experlimental uncertainty in regard to £(8) actually is

carried over 1integrally to Bp(6), resulting in relatively sizable

error. As a result, the tall end of the indicatrix obtained

appears to be more variable than it actually 1is, despite the fact

tga; a few aberrant indicatrices have been set aslde. 13
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the volume functions Bg(8). For the three wavelengths
indicated, Fig. 1.9 shows the range containing all the particle
indicatrices computed in this way (112 for A = 546 nm, of which 26
correspond to measurements taken at the three wavelengths 546,
436 and 366 nm). Only the tail ends for the wavelength 436
nm are completely plotted as an example.

Figure I.6 furnishes another illustration, the computa-
tions being made on the basis of the measurements taken by
T.J. Petzold (1972), which have already been shown (Figs. I.2
and T.5); two indic atrices were chosen, corresponding respectively
to the clearest water (1500 m, Atlantic) and to the most turbid
oceanic water (coastal,California). After deduction of the
part attributable to molecular scattering, the indicatrices ob-
tained were plotted conjointly as a mean indiceatrix.

Without being more specific, in view of the uncertainty in
the case of clear water, it seems that in this type of water
indicatrix for suspended particulate matter generally has a very
marked minimum, frequently followed by a rapid increase toward
150°. The mean indicatrix, shown as a dotted line in these
figures, is virtually identical to the curve representing the
lower limit of range for angles greater than 90°; for angles
less than 90°, this indicatrix is appreciably in this center of
the range.

3.2. Adoption of a "Typical" Particle Indicatrix /12

Knowledge of the particle indicatrix is indispensable in solving
a large number of problems, both those dealing with the relation-
ships between scattering properties and suspended matter con-
tent of the water, and those dealing with the visibility
of immersed objects or the propagation of daylight or artificial
light. Study of the asymptotic system of submarine lumlnances
(L. Prieur, A. Morel, 1971), or more generally, all problems
1inked to radiative transfer, reveals this necessity. For these
computations or for these previsional models, it 1s useful to
have available a "typical" particle indicatrix, that is, one consti-
tuting a satisfactory approximation. For thls purpose, the
"mean curve" obtained hetween 30 and 150° may be used and
combined with the mean curve for angles between 1.5° and 14°.
A connection between these two parts was made earller (D. Bauer,
A. Morel, 1967) by using the measurements made by N.G. Jerlov
(1961), which were performed to a limit of 10°. The measure-
ments subsequently performed by F. Nyffeler (1969-1970) between
1° and 25° have shown that this interpolation was correct. Uncer
these conditions, the scattering coefficlients for this "typlcal"
indicatrix are as follows:

14
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TABLE II. M"TYPICAL"™ PARTICLE INDICATRIX.
First column: volume functlons normalized to
90°. Second column: normalized coefficients B(6), that 1s, nor-
mallzed with respect to the integral ylelding b (cf. Appendix 1).
For this computation of the integral an exponentlal extrapolation
of type B(8) = exp (~k@) was performed, between 1 and 10°. This
Yielded a value for the integral between 0 and 1°, equal to 9.7%
of the total integral between 0 and 180°.% This value may be
low, in view of the results obtained by T.J. Petzold (1972).
This Investigator computes as between 0.1° and 1° the values
constituting 20 to 30% of the final value for the integral (0-180°).
Last columns: polarized components (cf. Section 5), perpendicular
(B1) and parallel (B») to the scattering plane, computed from
the rate of polarization:

Ei(e) - Eé(e) ) Ei(e) - Eé(e)

p (8) = =
el(e) + 8,(e) B(s)

the values for p(6) used are shown in Fig. I.13. The "typical®
indicatrixz is shown graphically in Fig. III.7 (Part 3).

o | 8te) | = . £(s) Be) | (e F;(8)
8 6{50) 8(e) ¢ 8(30) x103 ho3 ;103
(1) 340D 7745 30 31,k T0.7 77.5 65.0

1.5 26150 58.8 bs 8,5C 19.1 23,3 b7
2 19106 L3.0 60 3,41 7.68 11,2 L2
3 8500 19.2 75 1,61 3,63 6,1 1.15
4 k750 10.7 90 =1 2,25 L,00 0,50
5 2990 6.7 105 0.7k 1.67 2,82 0,50
6 1920 L, 32 120 c,6s 1,46 2,15 0,75
7 1300 2.93 135 C.653 1.46 1,87 1.05
8 915 2.06 150 0.87 1,96 2,18 1,75
9 670 1.42 (165) 0.17 3.8

10 500 1,12

12 314 0,71

14 224 0.505

16 168 0.37¢8

18 130 0.298

20 102 0,230

22 15 0.169

2L 58 0,130

26 L7 0.106

28 38 0.0856

¥The value of the total integral is L4L if B(90) is assumed to

be identlical to 1. An error was overlooked when these compu=-
tations were first presented (A. Morel, 1968), the indicated
value being 44lU/m rather than L4ls, The coefficlents of the rela-
tlonships between B(8) and b were in error in the same equation
(cf. correction, 1970). Possible variations 1in the indicatrix, par-
ticularly in the forward part, result in possible variations esti-
mated at #17% of the integral (cf. Sections 2.2 and 2.3, Part 3).

15

 REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

o1




It should be emphasized that by its very nature, a typical
indicatrix of this sort is nothing more than a mean which is
Judged to be satisfactory. It is precisely the variability
about this mean which will be used during the theoretical
interpretation (Part 3, Section 2) to find data on the nature
of the particles (more exactly, their indicatrix, as well as on
the law governing their distribution.

4., Influence of Wavelength

The qualitative aspect of the problem, that is, the
influence on the shape of the indicatrix, should be dis-

tingushed from the quantitative aspect,, that is, the influence
on the magnitude of the scattering phenomenon.

4.1. Variations in the Shape of the Indicatrix

Actually, this question has been implicitly examined above.
To give a brief summary of the main points: when the water is
clear, the indicatrix, which is already relatively symmetrical,
becomes more so if the wavelength decreases, due to t{he increas-
ing role of molecular scattering, which is highly selective. On
the other hand, for turbid water the shape of the indicatrix
remains virtually unmodified by the change in wavelength, thus
indicating that the molecular scattering is negligible, and that
in addition the particle indicatrix is virtually insensifive to this
factor. Figure J.7 gives examples of these two cases.

After molecular scattering has been subtracted, the shape /13
of the particle indicatrix effectively varies with the wave-
length; it, was not possible to show any systematic law for this
variation.! on the average, when normalized to 90° the indicatrices
are virtually the fame, as shown by Fig. I.9. The measurements
made by N. Nyffeler (1970) also indicate an absence of marked
influence in the small angle range.

uThis was true in the case of ocur measurements, at least, since
Hinzpeter (1962) notes that the indlcatrix is less asymetrical at

400 nm than 1t is at 700 nm; this probably 1s a particle iIndicatrix
since these results were obtained for the turbid weters of the
Baltic Sea.

3
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4.2, Scattering Selectivity

y.2.1. Volume scattering Functlons

On the other hand, when molecular scattering 1s subtracted,
it appears that £ (8) (considered as an absolute value in this
instance) varies ystematically with the wavelength, increasing
slightly as the wavelengtir decreases. Figure I.10 shows varia-
tions in the ratios of B (6,)\) to Bp(e,5u ) as a function of 6,
when the value of A is U36 or 366 nm. For reasons which have
already been 1lndicated, the ratlos are better defined at small
angles, since the varlapllity of the indicatrix at large angles
results in an increase in the standard deviation. Analogous
results have been obtained with Atlantic water (for 6 = 30° and
A = 436 and 546 nm), which have been presented elsewhere (A. Morel,
1970). J. R. 7aneveld and H. Pak (1973) have used measurements
taken at U45°; the ratlo of the scattering coefficients to wave-
lengths of 436 and 546 nm respectively varles approximately
from 1.10 to 1.45 according to these investigators. (These GO
not seem to be coefficlents relative to single particles, but
directly measured coefficients, and thus the ratio may be
slightly affected.)

Indirect method. A precise although indirect method (A.
Morel, 1967) also makes it possible to determine selectivity
for a given angle. This method has been used for five wave-
lengths (578, 546, 436, 405 and 366 nm) for a large number of
values at 90° (Fig. I.1ll), and for a lesser number at 30°,
nevertheless furnishing appreciably identical results, taking
the confidence factor into account (Fig. I.12). This method
is based on the followilng principle: if the measurements are é;ﬂ
performed using optically pure benzene as a reference, the
scattering selectivity of a sample may be determined from
the scattering selectlvity of benzene, experimentally known
and theoretically computed. In practice the procedure may be
as follows: taking r as the ratio of the scattering coefficient
of the sample to thet of benzene (for an identical angle 8,
which is not written for purposes of simplification), for A =
= 5L46 nm one has r(546) = ro(546) + r,(546), and for all other
wavelengths: r(A) = ro(d) +r (A), functions o and p denoting,
as above, the part attributabge to pure water and that attribut-
able to the particles: pelow b the indicatrix represents benzene.
To state this explicitly:

¢ (546) + 6 (516)

Y(5ug) ©

B, (516)

17




and assuming that when the wavelength 1ls changed, each scattering
coefficient is multiplied by a specific coefficient k, that is
by Ko, Kp and Ky respectively, one may write:

K 46 )
() = 080(5 )+erp(y6) i

K, & (546)

and finally, relntroducing r(546),

r()) = Const +

b

20k Bo(0)3667 BpBlsas l -
| I///////l
; T/I
1.5¢ 7,//1"’“”‘1 y
I e
N-23 23 19 1 n 2
1.0+ n
30 60 6° 90 120 150
20 T T T T T
B (Ol36/ Bp(®)sys
|
T o —
11 L l
b

IN-26 2 " u &

Fig. I1.10. Ratios of B;(8,2) to
B.(0,5U46) given as a function of ,
with A = U436 and 366 nm; the un-
broken llne represents the average
value; the vertical line corresponds
to the standard deviation computed
for N measurements; the values for
N are indicated. The maximum for N
is 26, corresponding to 26 samples
on which measurements were per-
formed for three wavelengths 1n
turn (see caption to Fig. I.9).

X
2 r°(5h6) + L p

L
p(56%

%

one obtains:

K
7= (r(546) - r (546))

If the scattering
selectivity of the
particles was nil (Kp = 1),
one would obtain a
linear equation between
r(A) and r(546), the
gradlent being the
inverse of the value
for Ky.2 In actuality,
by making r(X) a function
of r(546) for each sample,
one obtains approximate-~
ly linear forms,
but different gradients
for 1/Kp, which thus
make 1t possibls to
evaluate Kp. These
values, obtained for
8 = 90° and 6 = 30°,
are given as a function
of the wavelength in
Fig. I.12, and are
compared to the curyve
corresgonding to A=0.
and A-1.2 selectivities;
it should be noted that
they are very close to
the values obtalned
directly by the first
method.

>The values for Kp

[note continued on following page]
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L Bo(X.8)/ B, (516.08)
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Filg. I.12. Results obtained by the
method 1llustrated by the preceding

figure, dealing with the scattering
selectivity of particles (at 30°

and 90°). The vertical lines cor-
respond to the standard deviation
for the values, and the curves cor-
respond to the laws indicated.

k,2.2.

Total Scattering /15

Coefficlent

Apparently there has
been no systematic direct
measurement of b at
several wavelengths for
a single sample or at
identical locations and
depths. Conclusions
—- which are, moreover,
relatively controver-
silal -- may be drawn only
by hypothetical means.

If the shave of the par-
ticle indicatrix may

be considered insensitive
to wavelength, the selec-
tivity found for various
angles (which roughly
corresponds to a A=l law)

is related to the total

coefficient b by an integral.
This was the theory set forth by J.R. Zaneveld and N. Pak
(1973), for example, and it is probably well founded.

Another hypothesis consists in assuming that 1n the atten-
uation due tg the particles, the scattering factor is heavily

preponderant® over the absorption factor. This is the theory
5(cont'd) of benzene which were used are as follows (A. Morel,
1966): X nm 578 546 436 405 366

2.78 3.88 6.36

6This hypothesis is probably partially inaccurate for some bands

of the spectrum in the case of highly colored particles; it does
seem to be realistic, however, as can be shown in an approximate
manner by the following experiment: when a spectrophctometer is
used to determine the spectrum of a seawater sample in relation

to a flltered sample of the same water, the particles simultan-
eously serve as scattering and absorbing centers. The same par-
ticles, collected on a filter with the same diameter as the tank,
will act primarily as absor bing centers if the filter has been
"brightened" by the oi1l used for immersion (the reference consists
of an unused filiter brightened 1n the same way; C. Yentsh method,
1957). Now, none of the measurements made in this manner were
comparable to those made in the preceding experiment, unless a
volume at least 20 times greater than that of the tank is filtered.
This shows that scattering has a heavy influence on absorption. The
approximations made: a spectrophotometer does not measure c, but an

intermediate term between c¢ and a, and the particles on tge filters
stlll have a scattering effect. These agproximations tend in the
same directlon and reinforce the conclus

Kp 0.79 1

on.
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Fig. I.11. 1r(90,)) given as a furction of r(90,546)

for various samples (see text). The open symbols
correspond to measurements taken in the English Channel,
and the solid symbols to measurements taken in the
Mediterranean.

Key: a. Enlargement

espoused by W.V. Burt in 1955. If dispersion is observed for
the attenuation coefficient ¢, v.rtually no part of chis
phenomenon may be attributed to tthe coefficlent b. W.V. Burt
interprets in this way measurements performed with a spectro-
photometer and spectra obtained corresponding to exponential
laws ranging from approximately A=l to r-2.

20
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5. Polarization

5.1. Results

H. Hinzpeter (1962) was apparently the first to show that
the angular distribution of the rate of polarization of natural
incident light is very appreciably symmetrical on either side
of 90°, with a maximum value at this angle on the order of 0.40
to 0.65 (slightly lower at 700 nm than at 400 nm), and values
on the order7 of 0.10 at 30 and 150°. G@.F. Beardsley (1968)
has measured polarization in all possible configurations, with
combinations of pclarizer and quarter-wave plate simultaneously
on the incident and scattered beams. In this way it is possible
to determine, for various angles, the 16 components of the
matrix to be applied to the four Stokes parameters characteriz-
ing the incident wave (cf. Eq. (1.12), Part 2). The values for
this matrix are low for non-diagonal components, which should
theoretically be nil if the particles are spheres. However, tche
strongly diagonal nature of the experimental matrix shows that
assimulation by spheres constitutes a satisfactory approxi-
mation (cf. 1.2, Part 2).

With natural incident light, the variation of the rate of
polarization with the angle 6 is approximately symmetrical, as
shown by Fig. I.13, which gives on the left an average curve
corresponding to five measurements made on wgter from the English
Channel and three on relatively turbid water® from the Mediter-
ranean (Villefranche Bay). The maximum and minimum values
observed at 90° (60% and 79%) are represented by the vertical
line. The dotted curve corresponds to the curve determined for
optically pure water (A. Morel, 1966), with p(90°) = 84%, The
righthand part of this figure shows the curves obtained by G.F.
Beardsley (1968) (with the exception of that obtained at the
"Atlantic 4" station); these show that the maximum rate (at 90°)
cannot exceed 50%, and in addition that the angular dependence
would be more complex in the 20-U4g° zone.

7For the extremely turbid waters of the Baltic Sea.

8Measurements of clear water, rrom which the influence of molecu-
lar scattering must also be subtracted Iin order to compute the
polarization due to the particles alone, are subject to caution
due to the loss of sensitivity attendant on positioning of an
analyzer. The elght measurements used here deal with water with
an adequate scattering capability (b > 1 m '), for which the in-
fluence of molecular scattering may be discounted.
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Fig. I.13. Rate of polarization p(6) as a function
of angle 6.

Key: a. After Beardsley

b. Water
c. Particles

5.2. Variability of Rate of Polarization at 90° /16

The systematic measurements performed at 90° by A. Ivanoff
(1961) show, for the seawater samples studied, that the rate of
polarization at this angle varies extremely widely from a value
{(80%) in the neighborhood of that of pure water down to low
values scarcely higher than 40%. This variation occurs in a
very regular manner, with the water samples with the highest
scattering coefficient being roughly those showing the lowest
rate of polarization. An attempt may be made to determine
whether this effect 1s due solely to the fact that the role
of molecular scattering, for which the rate of polarization is
high, gradually becomes negligible, or on the other hand whether
the rate of polarization of light scattering by the particles is
itself variable, and what the nature of this variation may be.
By definition (c¢f. Part 2, Section 1.1), the rate of polariza-
tion 1s the ratio of the intensity of pclarized light i; toc the
total intensity I + Iy of the natural light and the polarized
light. Breaking down the factors attributable to scattering by
the particles and bty the water 1tself {furctions p =2nd o respec-
tively), the result is:

1 + I
= i = FL To
P T+ 1 I+ I _+1 _+1
n n mp LA np no
in the same way, one may write:
Yaa [..
P 3 imemme—— and T .
Q i + D L (3
o ro * e ap
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The denominators of these three expressions are respectlvely
proporticnal to B, B, and Bp. The result is thus:

8y 132
P=® T P, %3 Py

that i1s, an expression corresponding to a "mixing law," where p
varies with B according to a hyperbolic law:

8°( ) s
P=p,*g (P =P s
p tends toward the limiting value p, when the scattering co-

efficient B 1s high, and toward p, When the scattering is merely
molecular scattering (Bo/8 = 1).9

For purposes of comparison with the experimental values
obtained by A. Ivanoff, the logarithm of B/B, as a function of p
was used rather than B/B, (see Fig. I.1l4), two lines were
plotted delimiting the range within which the experimental
points were concentrated, and the median line was also plotted.
The curves correspond to various values given to pp a priori,
the value for py belng 0.84. It appears that the distribution
of experimental points corresponds to a variable rate of
polarization for particles from 0.7 to 0.4, and more importantly,
that these variations are relatively systematic in nature. The
particles in the most turbid water samples are the least
polarizing, while those in clear samples show variable rates and
may reach values on the order of 0.8. (This would moreover
explain why the extrapolation made by A. Ivanoff resulted in a
value -- 0.88 -- which was slightly high for molecular scattering.)

Finally, these values, especially those relative to 90°, are
in agreement in their diversity and confirm the varjabllity of
p(90). As will be seen in Part 3, this variability 1is theoretlc-
ally plausible, but some of the causes which may be found for
thic phenomennn, such 25 the influence of partiecle shape, will

remain difficult to isolate.

6. Relationships Between Scattering Coefficients

The use of certain ratios for volume scattering functions
has been recommended to serve as a descriptive element for the indice -
trix (for example, the ratio B8(30),2(45), A.F. Spilhaus, 1968).
More generally, confronting the difficulty of directly measuring
the total scattering coefficient b, an attempt has been made to
evaluate this factor on the basls of measurements of a given

9There is no hypothesis iIn these computations wiih the exception
of that based on the additivity of scattered waves.
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Fig. I.l4. For various values p
for the rate of polarization of
particles at 90°, varlations in
the rate of polarization of a
sample depending on the value of
its scattering coefficient at 50C°,
unity being molecular scattering,
Bo(90), at the same angle. The
ordinate scale 1s logarithmic.

Key: a. Rate of polarization

b = _l
B_1o)

P

(8(s) -

volume function B(8).

N.G. Jerlov has used this
method since 1953 and
derives b from B(45°).

Such methods assume that,
at least on an approxi-
mate basis, the ratio
B(6)/b -- that is, the
so-called "normalized"

B(8) coefficient -- is
sufficiently constant.

In using these methods,

the precaution of sub-
tracting the part attribut-
able to molecular scattering
from B(6) has not always
been taken; this results

in inaccuracies, especially
if 6 is greater than L45°
(and even at 45°, if the
water 1s extremely clear).

Such equations may /17
be written on the basils
of the values for B(8) .
relative to the "typical"
particle indicatrix and
taking molecular scatter- e
ing into account (A.
Morel, 1968). The
result 1is thus:

B(8) being the measured value for the sample, from which the

] molecular part B8,(8) is subtracted. With the values given in
- Table II, this equation is written as follows for 30, 45 and 50°:

b= 1h (e(30) - g (30)) +b  , b= 50 [&lli- 8, (45)) + o,

o4

L e e L

Frequently By(30) may be omitted, Bo(45) may be omitted only in the
case of clear water (cf. Fig. I.é), and B,{(9C) only 1in

the case of extremely turbid water. The possibility of omittling
these terms decreases, of course, as the wavelength decreases.
The value by, which varles with the wavelength, is included 1n

24

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,




Table I. The possibility of omitting this term is the same as
that noted above.

A detalled review of the experimental values obtalined by
a number of investigators for these ratlos, either between two
angles or between the volume function and the total coef-
ficient, will be made subsequently (Part 3, Section 2). The
variability of these ratios, which actually reflects the
variability of the particle indicatrix, theoretically may be
interpreted as the variability term for the particles themselves.

R,
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PART 2
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Introduction

The search for a theoretical interpretation for the experi-
mental results includes two aspects: first, determination of
whether one's knowledge of the marine suspended matter
compatible with that on scattering properties -- in other words,
whether the former explain the latter; and second, whether it
is possible to use observation of these scattering properties to
determine information on the particles which is difficult to
obtain by other methods. These precccupations have already
motivated several studies; without providing an exhaustive 1list,
these notably include those of Y. Otchakovsky (1965), T. Sasaki
(1967), and T. Sasakl et al. (1968); and recently, those of
H. Pak et al. (1971), G. Kullenberg (1972) and H.R. Gordon and
0.B. Brown (1972). Thz last three studies were made not on the
basis of published and tabulated values for Mie functions, but
rather with the use of data computed for this purpose. Never-
theless it does not appear that the possibilities afforded by
theoretical methods have been systematically explored, nor that
the comparisons made between theoretical and experimental results
have been methodically carried out. It is first necessary to
interp. .t the results of theoretical computations in order to
be able tc predict the influence of various parameters without
having to perform additional computations. A guideline may be
drawn from this condition which will aid in performing compari-
sons. The methods presented here are an effort 1in this
direction. The object of this second part is thus to furnish
the theoretical bases necessary to provide a solution for the
problem, and to show what factors may be predicted by computa-
tion under what conditions. A comparison of the theoretical
results thus obtaincd with experimental data is regerved for

Part 3.

First of all (Chapter 1), there is a brief review of the
general relaticnships between the state of peclarization of the
incident wave and that of the scattered wave. More thorough
development of these relationships may be found in the fre-
quently clted article by F. Perrin (1942), as well as the
chapters dealing with this subject in the works of Van de Hulst
(1957), Presendorfer (1965) and Delrmendjian (1969). The
purpose here 1s merely to determine the framework within which
the most limlted case considered telow may be fcund --
that is, that in which the incident light is assumed to be
natural or rectllinearly polarized (perpendicular or parallel
to the scattering rlaneg.

Marine particles in suspension with a wide range of size
varlation are within the province »f the Mie theory (1908).
Applied to electromagnetics thecry, thils theory uses Maxwell
equations to obtain a rigorous analytlcal solution to the
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problem of the Scattering of g flat wave by a Spherical particle
of any given size. Fronm this standpoint, it coincides with the
Rayleigh theory when the particles becone extremely smal]l in

are those furnisheqd b7 geometric optics (reflection, refraction)
and diffraction theory.

No attempt has been made in this work to set forth the Mie
theory, which has become classical, €speclally since the publi-
cation of Van de Hulst's workl; Chapter 2 below merely reviews

POssibility of approximately predicting results guides the
choice of computations, both for indicatrices for individual
particles and subsequently for indicatrices for polydisperseq

Systems. The interpretation which must pe Sought for these

and geometrica] optics on the other, Moreover, the Rayleigh—
Gans approximation furnishes elements which are highly important
in bPredicting the Scattering broperties of the poly-
dispersed Systems ¢onsidered,

Chapter 3 indicates how Scattering broperties may pe computed
for a Population of particles of varied size, but assumed to pe
of the same nature ("polydispersed System"). mhe pPhysical
significance of these Computations ig discussed, taking into
account the faet that the mathematicg] limits corresponding to
minimum ang maximum sigeg must be posited relatively arbicrarily.
“01S 18 g compliex problen which wil; reappear on many occasions

The initial hypothesis for the computations wasg the assumption
that marine Particles can be asslmilateq by transparent Spheres,
which Necessitates some discussion. Mie thecry has teen e€xtended
to the case of nonhonogenecys Spheres and teo the case of
differently Shaped partisies (ellipsoids, cvlinders, ete, )

€ and also those of Rayleigh op Debye or Gans are Cmitted In
the work or Van de Hulst the reader wilz fiad an annotated
bibliography with historical commentary at the end of each

27




EREREE ] SR

gt pt hu

but the computations are generally more complex. This is an
Initlal reason to limit one's considerationc fto the casze of
spheres. A second, more convincing reason is related to the
fact that marine particles are of random shape, and thus the
sphere becomes the best approximation of their completely
aleatory orientation. Confirmation for this hypothesis may be
found in the experimental works of Hodkinson (1963) and of
Holland and Gagne (1970). The latter investigatcrs show that
in practice irregular particles behave as equivalent spherical
particles for scattering 1n natural light (except perhaps for
backscattering), but that, on the other hand, polarization is
appreciably affected. This possible effect will make it necessary
to qualify the conclusions relative to polarization (Part 3).2

The other choice, that of the exclusive use of real indices
should alsc be explained. The introduction of an imaginary
component to represent particle absorption would make vir-
tually no change 1in the results, since the term to be introduced,
which would actually be fairly hypothetical, should in any case
be very slight. Its influence would be negligible in this case,
as 1s 1ndicated by Fig. II.17, where, everything else in practice /19
being equal, the computed scattering indicatrix is compared with
the index 1.05 and that computed by O0.B. Brown and H.R. Gordon
(1972) for the index 1.05-0.10 i. The values approximately
coincide, while the imaginary term corresponds to a level of
absorption which is already extremely high (92% for passage
through a layer 10 um thick).

In conclusion, given the hypothesis used, the model
thus constructed is undoubtedly idealized, but it does consti-
tute an initial approach, or, if one prefers, a reference, in
relation to which it will be possible to interpret the
deviations.

1. States of Folarization and Scattering

1l.1. Description of the State of Polarization by Stokes Parameters

For every beam of completely polarized monochromatic light
there 1s a corresponding vector electrical fileld whose com-
ponents on two rectangular axes (r, 1) within the wave plane
are written:

1 {* = 3 - b
E =g, Wi (et = 6y) E =p el (wt = ) (1.1)

- L

2Polarization by marine particles 1is effectively different from
that which wculd be due to spheres, but the difference 1is slight
(G.F. Beardsley, 1968) (cf. Part 1, Section 5).
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r and T may be of any magnitude but are chosen in such a way

that the cross product A T s oriented in the direc@ion of
propagation of the light (incident or scattered); r is perpen-
dicular to the scattering plane, while 7 is within this plane
(formed by the directions of propagation of the incident and scat-
tered light considered). The four Stokes parameters are

defined by:

T * * —_—
L= hr Er *.ul El —— ro
Q=E E*-E E* r &
r r 171 —
* * —_—— ey e o
U=E E, + E.  E n
r Bt E ¢ 8} Incident wave

r
AP . (1.2)
Ve=i(ER-BE) Scattered wave

Given Eq. (1.1), three independent parameters are sufficient
to describe the state of polarization: pj, Pr and the phase shift
§ = ¢7 = 955 in actuality there is an equation linking the four
Stokes parameters (see Eq. (1.6) below). Expanding Eq. (1.2)
by means of Eq. (1.1), one obtains:

2 el
I =
FER YR

A 2
Q-Pr -pl

(1.3)

U=2 P. Py cosé
V=-27p P, s5iné

A simple geometric interpretation for this may be given: in
a general case, the vector E describes an ellipse whose axes are
different from the system (3, ). One assumes that tan e = e,
where e is the ellipticity (ratio of small to large axis) and
o 1s used to denote the angie fixing the direction of the large

axis in relation to r. O may be computed by reducing the ellipse
to 1ts principal axes:

PP,
tan 2a =2 cos s > R (l- u)

p’. = pl

The energy of vibration which does not depend on the_phase dif-
ference is: I = pi + p%, which is assumed equal to p2. Geo-
metric considerations lead to the following new expressions:

2

. 2 .
[ =p ’ Q= 92 cos 2 € cos 2a , = p2 cos 2 € 5in 2 «a + V=p sin2e,

(1.5)
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h make 1t possible to interpret the followlng specific

-- If pjy = pp, slven Eq. (1.4), o = n/4 and the vibration

¥ either linear, on the first bisecting line (§ = 0)
or the second (6 = 7). Q and V are nil, U is not
nil, and the Stokes vector is written (1.0 £ 1.0),
assuming I to be unity;

% or circular, to the right or left, depending on the
sign of § + #7/2; in this case Q and U are nil.
V 1s not nil and the result is (1, 0, 0, %1).

-- If p; or p, is nil, 1 = xQ, the polarization is recti-
linear, perpendicular or parallel to the smﬁmerug: plane,
respectively, and the parameters are (1, 1, 0, 0).

Finally, in the general case, § differs from the multiples
of /2, the vibration is elliptical and the Stokes parameters
are of any magnitude. 1In all cases the following equation
follows from Eq. (1.5):

1° = @2 + U2 + V2 (1.6)

which constitutes the total polarization criterion.

On the other hand, if the light is totally depolarized,
and E may still be assumed to exist, but they will have
n% phase coherence, p1 and pp are equal and I rema.ns defined
in the same manner. However, none of the magnitudes Q, U, and
V is statistically distinguishable from zero on the common time
scale and the Stokes vector for natural light will be written
(I, 0, 0, 0).

If partially polarized light is considered as the
superimposition of natural light IN and totallg polarized l}ght
Ip, this is written as: I =1 or I e + vyl
resulting in the inequality: Q2 + 89 + V . In its most
general form, the rate of polarlzation (falling between 0 and 1)
i1s the ratio:

'_(_Q‘ T v'.’)L/’f: . (1.7)

~
o

l.2. Scattering Matrices

When two waves without phase correlatlon are superimposed,
the Stokes parameters are additive. An optical device or, just
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as readily, a scattering medium produces from an incident wave
(Ig, Qgs Ug, Vo) an emergent wave whose parameters (I, Q, U, V)
result from linear combinations of the initial parameters; in

other words, the cevice or the medium is characterized by a
- "l‘.W"t- I
ILII % (1.8)
Py aiy

->
‘ranges in the vector field Eg relative to the incident wave
are translated by the following linear equations linking the
components:

AL R v By LRkt E o, (1.9)

'AJ Ay
Az Ap
whose coefficients are complex. By introducing Eq. (1.9) into

the aelinitions given by Eq. (1.2) and rearranging the factors,

one computes the 1€ components of matrix (1.8), which when

applied to the initial parameters make it possible to compute

the final parameters. These 16 coefficients are all real and
consist of quadratic equations of type A; Ag. For scattering,
problems , "modified" Stokes parameters (Iy, Ip, U, V) are usually
used; these are determined simply by: I; (or thus Ip) = 1/72(I + Q).
I (or thus IQ) = 1/2(I - Q), and U and Vv remain unchanged.

With this notation the total polarization criterion (1.6) will

be written: 4 I I, = Us + V2. The parameters characterizing
natural light “will ve (1/2, 1/2, 0, 0) and the rate of
polarization detined by Eq. (1.7) is reduced to: I1, Ip/1I7 + I,.

thus constitutes the amplitude transformation matrix,

Scattering by Isotropic Spheres

If the particles possess certain types of Symmetry, the
number of independent coefflcients in the matrix should b
than 16; an e€speclally Simplified case 1s that of scattering by
isotropic Spheres with 4 diagonal amplitude matrix )

(A3 = Ay = Q0), the matrix of intensities which 1is determined
from this becoming quasl-symmetrical:
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I J 1,0 AAY 0 0 )

12 = IE,O 0 5L2A2* (0] 0 (lc ll)
9 Up 0 O 1/2(aA% e aphl) i/o(a - AAN

v Yo ¢ O -1/20hagt aAM 1/2(aats AxAM

That 1s, noted with the intensity functions i (see definition
in Appendix 1):

T BV B R I
12, 1 120 (8] i2 Q 0

= - ’ . l.12
U el Ug, o] 0 i3 1), ( )
A VO o] [0) -11‘ 13

The factor 1/k (with k = 2r/X) arises from the fact that the
intensity functions are defined on the basis of the amplitude
functions S = kA, by i = S15%, 1, = 8282 +«.3 the terms in the

A matrix (1.11) are the effective partial cross sections b1, Do
«+. (cf. definitions, Appendix 1). This matrix includes four
terms which are not zero, of which only three are independent
since they are linked by the following equatlon, which is
easlly verifiable on the basis of the expressions occurring in
1.11:

(1.13)3

Use of the matrix equation (1.12) makes it possible to
predict the following cases:

== 1if the incident light is polarized elliptically (I, Io,
U, V) or circularly (I, Ip, 0, V), or rectilinearly
but not in the directions 3 or T (I, Io, U, 0), the
scattered light is generally eliiptfcal, since 13 # 1) #
# 0; in addition it is completely polarized if the

3Perrin and Abragam (1951) have shown that when spheres of dif-
ferent size are present simult ~ously, this equality no

longer checks out except for the angles 0° and 180°, the direc-
tion of the inequality which replaces it being: 14, > 1 2 + 142.
The polarization criterion can no longer be met and partial
depolarization of the scattered light occurs when the incident
wave 1s completely polarized. Perrin and Abragam, as well as
Delrmendjian (1969) have suggested the use of thils depolarization
factor as an index of heterogenelty of size.
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Incident light is completely polarized, which can easily
be verified by €éxpanding the polarization criterion
(1.10) for a scattered wave and Incorporating the result
into Eq. (1.13).

-- 1f the light is polarized rectilinearly in direction »
or T (I, 0, 0, Q) or (Ip, 0, 0, 0), the scattered light
integrally retains this property.

-- flnally, if the light is natural (I/2, 1/2, 0, 0), the
Scattered 1light is partially polarized, since in general
11 differs from i,; its total intensity is 1 = (1/2) (I; +
I5) and the rate of polarization, as indicated above,
is: (il - ig)/(il + 12).

Case of 0° and 180° Angles

It will be seen later (Section 2.1.2) that S;(0) S5(0);
given Eq. (1.11), it immediately follows that i, =1, = i3
and that 1y = 0: the scattering matrix is diagonal and the state
of polarization, whatever it.may be, is strictly maintained;
a state of nonpolarization is also maintained. This may be
predicted on the basis of coens lderations of symmetry: the
previously defined "scattering plane" no longer exists, and
since the parcicles are isotropic spheres there can be no
preferred directicn in this axial system. The Same reasoning
applies to scattering szt 180°, with one difference: the scattering
prlane 1s no longer defined, but by bv extension, that is,
by having 6 tend toward 180° (see preceding figure), it may be
seen that the vector ] for the scattered light is in an opposite
direction to the vector 1 to which the incident vibration was
adjusted (Eq. (1.13)). 1In this case (cf. Section 2.1.2),
S1(180) = -S5(180), and consequently i; = 15 = -i., 1y remaining /21
Zzero. Any linear+polarization remains unchanged, éhe reversal
of direction of 1 compensating for the sign of U (= —iUO). Cr
the other hand, given this change in direction, V (= iVgy) retain-
ing its sigr, the direction of any circular (or elliptical)
polarization is reversed. There has been research on practical
applications for these last two points: the use of polarized
light for illumination has been recommended in order to reduce
the vell due to backscattering in submarine photography (R.O.
Briggs and G.L. Hatchett, 1965, and G.D. Giltert and J.C. Per-
nicka, 1966, to mention only the origlnators of this technique).
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2. Scattering by a Spherical Particle

2.1. Formulation of the Mie Theory

In the case of a spherlcal or optically inactive isotropic
particle, scattering is axlally symmetricel, the axis being the
direction of propagation of the incidernt wave; thils is true on
condition that the incident wave itself possesses this symmetry,
which 1is particularly the case if the light 1s natural. Any
plane contalning this direction is a plane of symmetry; a plane
which additionally contains the direction in which scattering is
observed 1s the "scattering plane" (frequently termed "hori-
zontal" due to the experimental arrangement frequently used).

In this plane 6 denotes the angle between the directions of the
incident wave and the scattered wave; a single angular parameter

is sufficient due to the rotational symmetry. As was previously
seen (Section 1.2), the amplitudes of the components of the
electrical field following the two rectangular axes considered

in the plane of the scattered wave, one (index 1 or r) perpen-
dicular and the other (index 2 or %) parallel to the plane of
diffusion, are S1(8) and S,(8) (Sz and Sy are zerc). The cor-
responding intensity functions (without magnitude, cf. Appendix 1)
are obtained by finding the square of the moduli:

) (2.1)

N
nou
0 )
N
—~
D <
—
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Mie theory furnishes an exact solution for these
amplitudes, which depend, in additicn to angle 8, on:

-=- the size of the particle, or more preclisely, the relative
size, by the intermediary of the parameter o = 2wr/i,
where r is the radius of the spherical particle and )
the wavelength in the medium surrounding the particle;

-- the relative index of refraction m, that is, the real or
complex index of the particle in relation to the index
of the medium external to the particle.

This soluticn is expressed in the form of convergent series:

=
]}
Q

2n + 1

°1 (aym,0) = nEJ n (nel) ( L (cos 8) + b T (cos 8))
n=o B R . (‘_.
oy fame) = ] 2 e (%, vy (cos ) va t (cos ) ,

o}
—
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(n, positive integer, n = 1, 2, 3, ...).u

The ifferent roles: each term
in one or mbines funections dcpending
Solel functions a, and bp which

f' the index (

waves corresponding to each
partial waves
coefficients" ay index m, the value of
arge, and as a result the
ccount (which may be
mitted by osclllating multipoles) is greater
wly converge. Inversely, when o is sufficiently
small the coefficients may be negligible from the second order on,
and, as will be seen later, the equations are reduced to those
of the Hertzian dipole; in other words, this limiting case is
that of Raylelgh scattering.

2.1.1. The Functions T2 Tn and anz bn

These are expressed by:

1
* My (cos 8) = sin g P'n (co0s 8)

2
T, {cos 8) = 3’15 P', (cos 8} , (2"))

where P'  is the first derivative of the Legendre polynomial of
order Pns and by :

n moa) y'o(a)

ma) ( (a) - m Yy (m o) ¢" (o)
v (a) - v, (n u‘w'n (a)

n r;}'—(.:_(l) - wr. T —J."/T—'-n—z(lj ’

where Yn 1s the Ricatti-Bessel function of order n and y'y its
first derivative; Cn 1s the Ricatti-Hankel function of order n
and ¢'p its first derivative. The arguments are a ang the
product ma, as already defined.

These functions Yn and gn are linked to the Bessel ang
Hankel functions of order n + 1/2 by:

4In these formulas and up to JSection 2.2. the relative refrac-
tive index 1is denoted by "m" to distinguish 1t from the order "n."
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jn+1/2 (x} - (x" = > ) H“.U/;. (), (2,5)

where
S vk . (2.6)

Jpn and Yn are the Bessel functions of first and second type of
order n, respectively. Hp 1s the Hankel function of the same
order.

Introducing the Ricatti-Bessel function of the second /22
type xpn:

. T x.1/2
X == T Y e (0, (2.7)

tn(x) is thus expressed:

Ta (xd = 0g (%) + 1 % (x). (2.8)

It should be noted that the coefficients an and bp are
complex due to the presence of the function Zns €ven when the
argument (ma) is real (nonabsorbing particles). 1In this lact
case, however, real particles are immediately separable from
imaginary particles, which is shown by substituting formula
(2.8) in Eqs. (2.4). It is possibls to compute these series in
practice, since at each order, the values for functions ap, by,
™ and T, may be derived from the relative values for preceding
orders by using the recursive equations established for Legendre
polynomials and for Bessel functions. This is examined 1n
greater detall in Appendix 2, "Computation procedure and adap-
tation to computer." In this appendix it will be shown that
in the specific case examined previcusly, when m 1s real, after
separation of the real and imaginary fractions, ap, like bp may
be given in the form:

1 . -
re fa} = —es ofe} @Sl
i *D/g + /3
since p and q are real numbers themselves, p/q may assume any

value between 1> depending on the order n; this makes it possible
to reveal an important characteristic of the series of complex
numbers ay and bp, demcnstrated in a slightly different manrer

by Van de Hulst: the locus of the pattern of the an (or bp)
factors 1s computed simply by first assuming: X = Re{an} and

¥ = Im{an} and then by _eliminating p/q between X and Y; one
obtains the equation Y2 + X2 - X = 0, the equaticn for a

circle centered on the point: Im = 0, Re = 0.5, with a radius

of 0.5.
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Figure IXI.l1 shows the pattern of the successive values
assumed for the first term aj when a varies from 1 to 100, the
computations being performed for an index of refraction of 1.05.

03

o3} e

When 6 varies
from 0 to 180°, the
functions my and tTn
operate in a manner
whose complexity
increases as the
order n 1s railsed;

—_ \u 10 ] 0
g, N . at the first orders
e » " one has:
- R L
o . n—s" 7 (cos 8) =1
opbs— + . m5 (cos 8) = 3 cos & (2.97)
01 o
— ). : )
. Nna=10% oo_ ‘ i1 (cos 8) 2 cos @
- ,‘\\\.,' 72 (cos 8) =3 cos 28 ., (2.9B)

[

01 02 0) 04 oOS

At higher orders
Re {a)) one begins to see
oscillations of

increasing number
and amplitude; the
largest amplitudes
correspond to the
values 6 = 0° and
6 = 180°. Using

the recursive

Fig. II.1. Values forthe complex coef-
ficlent aj; for a real index of refraction
of 1.05. Examples corresponding to
complex index values may be found par-
ticularly in the work of D. Deirmend-
Jian (1969); the loci of the aj images
no longer form a circle, but complex equations (2.7)
spiral curves remaining within the and (2.8)5 it is
circle. easy to determine
that at any order
one has: for 6 = Q°:

ma (1) = 1q (1) = (L/2) n (n+l), (2.10)
and for & = 180°

= 1 (=1} = (=2)% (1/2) n (nel)

fs will be seen below, these equaticns will be useful when an

attempt 1s made to lnterpret scattering at the specific angles
considered, and also in computing the overall efficiency of ex-
tinction. (I'hls 1s reduced to the overall efficlency for

5

Establiched in Appendix 2.
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see pppendix:

seattering in the case of nonabsorbingparticles:
"Definitions."

2.1.2. The Intensity Punctions 1 (6) and 1 (8)
l—————————Z———

Sgecific case of the angles g = 0° and 180°

Combining Ed. (2.2) with Eq. (2.10) and then with EQ. 2.11),
one jmmediately sees that:

ns«

S 2 5. 3 \ ({ o
5, (0) > (o) = 1/2 R Q2 asl) la bn) . (2.12)

and that:
Sl(mo)-—i,(wo)ﬂlﬁfz(-UH(QervHa —uJ . (2°13)

Taking the square of the modull in order to obtain the
intensities, it may be seen that 3. =1 vot
g® and at 180°. The consequences in reéard
nave been examined previously (Section 1.2).

v

h at
to polarization

h size

variations in indicatrices wit

mall (< approximately 0.2), the

series (2.2) expressing 51 and Sp are reduced to the first term,
1 and T1 having the values gilven by (2.9A). Furthermore (cf.
Appendix 2), bl which numerically 1s of the samecxdercﬁ‘magﬁrude
as an» is negligible, and once again Rayleigh scattering is

obtained, with:

When o 18 sufficiently S

. 2 . 2
i, = 15,1 = Const . !52\ = (nst cos® 8

The vertical component is constant, while the horizontal com-
g = 90°; the

ponent, varying wlth coscv, pecomes Ze€ro for 6 =

scattered 1ight 1s completely polarized. The indicatrices for
the two components and for the total intensity ip = (1/2)(11 *
+ 12) are symmetrical. When o increases all the values increase,
put asymmetry appears and becomes reinforced: there 1s less scabe
Leping av the £at1 end of the curve (s > 9C°) than “yere is in 1ts initial rar

(8 < 90°), and the minimum ip atb 90° disappears. On the otherA
nand, when o reaches the value 2.25,

~
-

a new minimum ig appears

to the rear (180°) and "migrates" toward the center part O
the jpndlcatrix, while another minimum appears 1n turn ab
when o exceeds the value & (cf. the figures given in Appendix 2).
The same process is repeabed to the extent that the slze param-
eter increases: uridulations appear =t the tail end and FTCV nore
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Constricteq. This i1s the result or taking into account
increasingly high Orders of the functions Tn and Ths Since

Aside from these undulations, the general tendency is sti131
reinforcement of the aSymmetry. If one no longer Considers the
intensity Ir, but the two componentsg 11 ang i,, their behavior
1s analogous, altheugh more compley. The rate of polarization
1; - 1)/(i7 + i2) a1so OScillates between +] and -1, (7The
Negative valuyeg correspond to cases in which the amplitude of
horizontal Vibration is Ereater than that of Vertica;
vibration.)

This description emainsg qualitatively valig when the in-
dex of Pefraction(real) varies Within relatively broad limits,
However, it Should be Stateqd that ip the index ig extremely
Close to 1, the amplitude of the oscillations of ip is maximal,
and in géneral, the difference between the two COmponentsg i
and 1, is large, resulting in Strong polarization. When the
Index diffeprs from 1, the Oscillationg are "dampegn (and the
polarization is decreased), as shown by Fig. 11 2 In

. .

addition, for 3 given relative g Size, the nNumber of O0scilla-

These points uill be discussegd in greatepr detai] below ang

Wwill be interpreted With the use of the Computeqd Numericg]
values,

1
function tables are extremely incomplete, especially in regard

i
and Second, the introduction of g large Number op tabulated
data -- when @vailable - into the Computep Fémains an excessively
long Oberation, For Subsequent use, it jg more efficlent in the
long run to provide for the €€neratioy of usefuyl indicatrices
in the Progranm. In addition, 1t has been found indispensable to
be able to choose the Step ofr the calculations both 1p regard to
the size and index of the Particleg and in regard to the:xatfeﬁnp
—
This Implies the choice of g criterion. an and by are Cconsldereg
t € Zero, ang consequently the calculuys Stops at this order,
when the moduli gp one or another of these coefficients reach
Values lowenr than 10-7 (cf. Appendix 2).



T ¥ H T
O NORMALISATION w C DEGAE
Paibhbedi

-~ the intensity /25
functions 11(9)
and 15(6), and
consequently the
total intensity
function ip(g) =
=" (1/2){1,78) +
+ 12(9)} and the
rate of polariza-
tion p = {11(9) -
- 15(0)/17(8) +
+ 15(6)} have been
computed for every
2° from 0° to 180°
(in rare cases a
step of 1° was used).

-- for each index, the
calculus was repeated
for 60 values for the
slze parameter O,
that is: 0.2, (0.2),
2, (0.5), 5, (1),
20, (2), 40 (5), 100, '
(10}, 140,(20), and

Flg. II.2. Scattering indicatrices 200, the numbers »
normalized to 0°: in the upper group between parentheses

@ = 10, and in the lower group a = §, indicating the a

In both cases, beginning at the bottom incrementation used.

one finds in succession indicatrices .
calculated for the following indices == finally, this entire

of refraction: 1.02, 1.05, et of operations was

1.075, 1.10, 1.15 and '1.20. 'The gggegﬁzdfgiggwgimes
ordinate scale is logarithmic. indices of refra%—
tion: 1,02,

1.05, 1.075, 1.10 and
1.15.

Key: a. Normalization to 0°.

-- for eac? case, that is, for each palr of values assigned to
o and nf, the real and imaginary fractions ofr S(0), the
amplitude at 0°, and the scattering efficiency factor .
Q were also computed (cf. Appendix 1 and Section 2.2.7).

For reasons given in Appendix 2 ("Adaptation and procedure

for calculation on computer"), the use of double precision (17

significant digits) is indispensable. However, it is the

7The notation n (rather than m) is agaln used to denote the
index of refraction. (In the future m will designate the
characteristic exponent of distribution.)

4o
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G 4 criterion adopted for con-

A (echelle log.) vergence of the series which,
by terminating the calculus,
determines its precision.

In the most unfavorable

cases (high values for a)

/4, the precisior corresponds .

“r to six signi: cant digits,

(922449/ . whatever the value of the

N ‘//// bonele 1 number (expressed as a float-

3 1078 ing point decimal) might

_ L ] otherwise be.

TO

tl— 3 T T 2.2.1. The Functions

gT(e)a-q
Fig. II.6. Graphs of a single
function, but for 6 = 0° and for In order ?o present
various values for the index these results in summary
of refraction n. form, variations in the
functions ip(&)a™" when

Key: a. Logarithmic scale the size parameter o variles

from 0.2 to 200 have been

plotted for each value for

‘he index of refraction (Figs.

1.3 and II.5). Six curves are plotted in each of these figures,
corresponding to the following six values for 6: p°, 2°, 10°,

4o°, 90° and 180°. TFor the sake of clarity, the number cf curves

has been purposely limited; however, at least schematically these
diagrams show how the indicatrices vary as the size increases.

Choice of the expression, or more precisely, the exponent
_4 affecting o was not arbitrary. As will be seen later (Sec-
tion 2.2.8), it arises from the expression for scattering, .
which constitutes a 1imiting expressicn for scattering at 0°
when the particles are of sufficiently large size.

The following remarks may pe made in regard to these figures:

a. For the lowest values for a, the curves corresponding
to symmetrical sczttering angles 0° to 180° and 40° to 140°,
coincide, while the curve for 90° is located below. The initial
iincar part of all these curves shows a gradient of +2. Finally,
for a %iven value for o (0.2, for example), the values Jor
1(8'a~% increase regularly with the index (cf. Flg. I1.6, which
shows all the curves relative solely to 6 = C, but corresponding
to various indices).

b. In regard to the angle 0°, the linear part of this
curve ls extended untll high values for the parameter a are
reached. Tilgure I1.6 shows that thils value for a lncreases as
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the index of refraction approaches 1. (The curves for 2° show
similar development, but to a lesser degree.)

c. After the linear part has been completed and a maximum
has been reached, all the curves for 0° show oscillaticns whose
amplitude decreases as o increases. These osclllations occur
around a fixed limiting value, which is 0.25.

d. The curves for angles 6 other than 0° also reach a
maximum, beyogd which the decrease is accompanied by complex
oscillations. This maximum appears for values for o which are
greater as 6 is smaller. Comparison of these figures shows that
the positions of the respective maximums are virtually not
Influenced by the value of the index; thus in contrast to the
situation at 0°, the corresponding value for o depends only on
the angle and not on the index.

e. Ignoring these oscillations, the mean gradient of these
curves (6 # 0) is established approximately around -2.3 for the

indices 1.02, 1.05 and 1.075, and around -2 for the higher
indices 1.10 and 1.15.

f. Finally, the curves for 6 = 180° always comprise more
or less of an exception: the oscillations are more erratic, and
to the degree that it 1s still possible to speak of a mean
gradient, this gradient is small or zerc, especially when the
index is high.

These remarks are made in view of the numerical results
obtained from the Mie mathematical formulation; these find-
ings have no interpretive value in themselves. Mie theory
furnishes a rigorous solution and covers all cases from that
of the extremely small particles falling within the province
of Rayleigh theory to that of particles of sufficiently
large size to be dealt with by the classical theories of geo-
metrical optlcs and scattering. These theories, which actually
are strictly applicable only to the limits and can be used
only 1n an approximate manner in the intermediate range, are
nevertheless able to furnish the elements of interpretaticn
more easlly and to give the results of computation a clearer
physical significance.

8The curves are plotted by jolning the calculated points in
linear fashlon. The Iintervals at which a 1s calculated make
1t possible to show the behavior of the functions only in an
approximate manner, without describing thic tehavicr In detail.

b3
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Thus Rayleigh theory acounts for the first of the
above remarks, while goints b and d can be elucidated by
Raylelgh-Gans theory. The other points -- point e only in
part -- may be satisfactorily explalned by reference to scat-
tering or geometrical optics (reflection, refraction). These
various interpretations will be examined in turn; their use-
fulness lies in the possibilities they offer for predicting
the nature of the indicatrices, for a given particle as well as
for a system of polydispersed particles.

2.2.2. Rayleigh Scattering Range

It has previously been seen (2.1.2) that in the case of
low values for the parameter a (0.2, for example), the Mie
formulas yielding 1,(6) and i,(8) are reduced to simple
equations revealing an angular dependence which is that of
Rayleigh scattering. Rayleigh's radiating dipole theory givss
the following expression for these components, 1] and ir:

related to physical magnitudes which are the wave number k =
= 2n/A, and the polarizability p of the particlelo, having the
dimensions L3. If the particle is an isotropic sphere with

radius r, volume V and index of refraction n, the polarizability

is furnished by the equation given by Lorenz-Lorentz:

or

replacing kr with o and assuming (n2-1)/(n2+2) = A, this becomes:

9An extension of Rayleigh theory proper, made by
Rayleligh himself at the time (1914} and expanded by Gans (1925)
(cf. H.C. Van de Hulst, 1957).

iOPolarizability is the induced moment+§ when the electric fileld
E is at unit strength. Vectors p and E are parallel for an
1sotropic dielectric, and in this case p is a scalar; in the
more general case it is a tensor, P and § having different
directions.

Ly
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(2.15)

Within the range of applicability of the Rayleigh theory
(o << 1), the quantities ip(6)a~" represented graphically are
thus expressed by:

. 6 .0 .
1,5 ¢ A , i, = 06 A2c0520 .

Given as a function of o and in logarithmic coordinates, these
quantities are represented by lines with a gradient +2, no
matter what values are attributed to 6. The respective posi-
tions of these lines obviously translate the symmetry of the
scattering indicatrix in relation to 90° (cf. Remark a).

Finally, the index of refraction comes into rlay to determine
the magnitude of the phenomeon through k2. TFor a given relative
size o and for a given angle (for example © = 0°, which is the
case illustrated by Fig. II.6), the scattered intensity is
proportional to A2. If one assumes the index to be relatively
close to 1, A is expressed approximately by:

A= (2/3)(n - 1) (2.16)

1 and i' being the intensities scattered by particles of the same
size and the index being n and n' respectively, the result is:

. 2
§ oL o (2.17)

The size of the intensity functions therefore increases as the
index of refiaction becomes farther from 1. As Fig. II.6 shows,
for example, the intensities are multiplied by 25 when the
index of refraction changes from 1.02 to 1.10.

2.2.3. Rayleigh-Gans Approximation

The applicability condiclon for the Rayleigh theory,

a =2~ /) 1 ’ (2.18)

i1s based on the following physlcal hypothesis: the particle must
be assumed to be small enough so that the electric field applied
i1s of uniform intensity. To make a Simple extension of this
theory to a larger particle and to apply it to each part of

this particle considered as an independent dipole, it must be
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assumed that at least on a first approximation, the electric
field remains the same for all the constituent parts of the
particle. In other words, the amplitude and phase of the wave
reaching a given part must not be changed in ny appreclable
manner by the presence of the other parts. This Implies that
the scattered energy 1s low and the phase retardation is
negligible, which 1is expressed by the condition:

27 r
X

b

In"li(<l ’

A corresponds to the wavelength within the medium outside the
particle and n to the relative index of the particle in relation
to this medium. (The €xpression corresponds to a maximum phase
shift, that is, to that of the radius passing diametrically
through the particle.) This condition 1s generally written:

p << 1 (2.19)
the parameter o, combining the relative index and size, being

assumed equal to 2o|n-1|. This condition can obviously be
met for high a values, provided that n is very close to 1.

Scattering at @°

In general, waves scattered by the conctituent parts of the
particle are not merely additive, sirice they interfere. However,
according to the initia: hypothesis (stating that the material
bresence of the particle does not m 2ify the condition of the
wave), the scattered waves are neces:arily in phase in the
specific direction 0°: the prolongation of the path of the
incident wave is exactly compensated by a decrease in the
length of the scattered wave and vice versa, no matter what
the spatial position of the various components. In thils par-
ticular case, where the amplitudes are strictly additive, the
expression for intensity given by Ravleiph theory retains
its applic%bility, and although o is smaller, Eqs. (2.15) remain:
17(0°) = a®A2. This furnishes an explanation for Remark b.

In reality this remark is incomplete, since the linearity on

log-log graphs is extended beyond the range of applicability,

whlle the condition P < 1 is no longer fulfilled. This pro-
longation provides the basis for the term given by Penndorf

(1960), the "extended Rayleigh region." As will be seen later /27
(2.2), the 1limit of this zone is fixed by the value 4.09 for T
parameter p; the corresponding value for p thus increases as

the Index approaches 1.
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General Case

For angles other than 0°, geometric compensation for path
differences no longer applies; consequently the amplitude of
the scattered wave 1s obtained by multiplying the amplitude
determined by means of Rayleigh theory by a factor F(86)
representing the interferences and dependent on 8 (or on two

angles 6 and ¢ 1f the phenomenon considered is not one of
revolution.

2 (0) = B s (1/2) 0 A (14 cos? 0) F (o) . (2.20) ?

F(8) is a function whose value is 1 for 6 = 0°, and less than 1
for any other angle. This function 1s calculated by integration
extended to the entire particle; the differential component
consists of elemental "slices" representing constant path differ-
ences. The integral may be expressed by the usual functions in
the case of particles with simple geometric shapes; with spherical
particles cne obtalns:

F (o) = (5 (1)), (2.21)
with U = 2asin6 /2, and
Jo,, (U)
¢ (v) = (&)1 ‘3/e
2 w372 ' (2.22) '

where J3,/2(U) is a Bessel function of the first type of order
3/2. This function individually multiplies the two components

11 and i,; as a result, the total polarization at 6 = 9Q°
characterirtic of Rayleigh scattering is retained. The scattering
indicatrix becomes asymmetrical due to a decrease in the values
at large angles. The effect becomes more appreciable as the

size o increases. When the function J3,/, reaches zero for the
first time, that 1s, when the argument U reaches the value 4.49,
a minimum appears which corresponds to extinction due to inter-
ference: for a = 2.25 1t appears at 180°. As o increases this
minimum progresses toward the small angles, while a second
minlmum corresponding to a second zero appears in turn (when

a = 8€), and so on. Successive minimums arise at the tail end
and the indicatrix forms a system of lncreasingly constricted
oscillatlons, while the rredominance of scattering in the forward part
(at 0° and nelghboring angles) becomes continually more marked. @
The "scatterliig pattern" resembles the Fraunhofer diffraction
pattern, but the radll of the angies of the rings are different.
As the particle size increases, thz one pattern gradually is
transformed into the other; in British lilterature this transition
zone 1s termed the zone of "anomalous diffraction." In the final
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analysis, the shape of the indicatrix determined by the function
G(U) ic therefore independent of the value of the refractive
index (given that n-1 remains low), since the argument U depends
only on 6 and a. LI Uy, Up ... denote the successlve values

for the argument at which the function J3/2 tecomes zero, the
equations:

2 a sin 6/2

U1 (=4.49)

b (= 7.73) (2.23)

represent the geometric loci «f successive minlmums in the
plane (o, 6). Curves representing the first six minimums are
shown in Fig. II.7. As an example i1t may be seen on this
figure that if o = 5, the scattering indicatrix should have
two minimums at 55° and 110° and the beginning of a third at
180°; if o = 10, there are five minimums and the beginning of
a sixth.

Figure I1.2 shows that this is indeed the case for the
lcwest value for the index (1.02), but as the index increases,
the system of minimums progresses toward small angles.

Returning to Remark d, curves corresponding to the various
angles 6 become detached from the curve relative to 0°, this
detachment being produced by the appearance of the first

minimum for the angle 6 under consideration (first equation 2.23):

the smaller the angle 6, the greater will be the corresponding
value for o, and this will occur independent of the index, since
it does not figure in the equation. The table below (first line)
shows the theoretical values of a for which this minimum appears
at the angles ¢ indicated:

g = 185¢ 1.2° 50¢ | L ac” ic” 2

"

N n
O A

s s

O W
-

)

Rayleigh Gars a = 2,24 2,42 3.17
Diffraction a = 3.82 L.58

L — Y D

— b
=y
-

2.2.4. Approximation by Diffraction Theory

~

Co

It should be noted that when the minimum occurs at 109,
that is, when o = 25.8, the value of p is 1 if the index is
1.02, but p reaches 5 1f n = 1.10. In other words, normally
there is no longer Jjustification for use of the Rayleigh-Gans
theory at thils polnt, and still less for an angle of 2°. For
these high magnitudes, diffraction may furnish an approximaticn
for calculation of the angular distributicn of intensities,
which for a circular diffraction opening is expressed by:

Lg
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Fig. II.7. Angular position of the first six minimums
according to Rayleigh-Gans theory (Egs. (2.23));
the dotted line represents the first two diffraction
minimums (see Eas. (2.24) belcw).

FU(e) = e (2.24)

with U = asin 6. The Bessel function J;(U) first reaches zero
when the argument U reaches the value 3.83. This makes it
possible to compute the values which should be assumed by the
size parameter o so that the radius of the angle of the first
dark ring has the values 2°, 10° ...; the second line in the
above table shows these values. This approximatiocn by dif-
fraction is more appropriate than use of Rayleigh-Gans

theory to explaln t?f share of the indicatrix in the

small angle range-—, and also for other angles 1f the index
differs markedly from 1. This particularly explains the

tlthe diffraction minimum occurs at o = 10% for all the curves
corresponding to 2° given in Figs. II.3 through II.5. However
other minimums have appeared earlier (except when n = 1.02): ’
these correspond to the minimums observed at 0° or, as will be
seen later, to those of the efficlency Q. Thils 1is interpreted
as the result of favorable or unfavorable interference between
the wave passing through the particle ("refracted" wave) and
the dlifracted wave forming the central lobe.
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increased number and constriction of the oscillations of the
indicatrix as the index increases (Fig. II.2), as can be pre-
dicted on the basis of Fig., II.7.

R

In conclusion it should be noted, however, that the position
of the first minimum for a given angle 9§ corresponds to values
i for a given in one or the other list, depending on the approxi-
1 mation which can be used; but these values are close enocugh to
account for Remark d.

2.2.5. Role of Refraction and Reflection

Independently of diffraction, the geometrical optics
approach implies taking into consideration reflection and refrac-
tion: the interaction of these three phenomena and the possible
interferences among the three wave types combine to form scat-
tering. Since the function F'(8) can assume the value zero, the
minimums would be total extinctions if the light scattered by
the interplay of reflections and refractions were not added to
the scattered light. The magnitude of the energy scattered
in this manner is governed by the value of the Fresnel reflection
coefficients and thus increases as a function of the refractive-
ness of the particle: the minimums are thus attenuated (cf.

Fig. IT.2) and the general asymmetry is not so pronounced (Figs.
II.3 to II.5 and Remark e), but on the other hand backscatterine
(for angles in the vicinity of 180°) is accentuated (Remark ).
It should be noted that the total extinetion of Rayleigh-

Gans theory, which brings F(6) to zerc, is no longer found in
this case: in this range the nminimums are also extremely marked
if the index is close to 1, and are attenuated as it departs

from 1. The preceding physical interpretation can be used

only by extension: the size of the particle relative to the
wavelength no longer permits strict use of the terms "reflection"
and "refraction."

Finally, application of the laws of geometrical optics has
made it possible to €xplain the phenomencn of the rainbow (it
J8 generally acknowledged that Descartes himself has given a
correct interpretation of this plienomenon), which is due to a
concentration of energy following an interna:? reflection (or
two internal reflections for the "second" rainbow) within the
droplet. The corresponding angle of emergence, which is that
of minimum deviation for the first rainbow, 1s 138° feop water
droplets. The same calculation, repeated with the use of other
index values, shows that the "rainbow" moves toward lower angles
8 as the index approaches 1 (Fig. II.8). The figures given in
Appendix 2 show that a stable maximum is quite apparent (toward
75°, for an index of 1.075) when the size is sufficiently large.
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- ) ' Other indicatrices

150+ & premier “arc en ciei” ] forparticle systems will

0 138° ~———_o— reveal this phenomenon very
clearly, within the pre-
dlcted range of angles,
taking into account the

100} 133 value of the index (see
Fig. II.17 and in Part 3,
Figs. III.2, III.7 and

III.12).
50} 1
b 2.2.6. General Remarks on /29
Indice n the Asymmetry of
- ) - the Indicatrix
. 1 120 1.30
10 Ho 7 In summary, for the
Fig. II.8. Angular position of reasons given previously,
"riinbow" depending on the functions 1(6)a-Y each
index of refraction. attain a maximum for an
o value which in practice
. a. First "rainbow" is fixed, no matter what
key i. Index n the value of the index may

be. On the other hand,
the maximum reached by the
curves corresponding to

0° occurs for an increasing value as the index approaches 1.

As a result, the difference between the curve for 0° and the

other curves, which determines the overazll asymmetry, becomes v

greater as the index approaches 1. As an example, when a = 200

the indicatrlx covers approximately eight orders of magnitude

if n = 1.02, and only five or six when n = 1.15 (cf. Figs. II.3

and II.5). This observation will take on its full importance

when an attempt 1s made to predict the results of weighted

addition of indicatrices.

2.2.7. Total Scattering Coefficient. Efficiency Factcr

The scattering efficiency factor “ec 1s defired as the

ratic of the effective scattering crecss sectign to  the
geometrical cross section of the particle (mr< for a spherical
particle of radius r), or in other words, as the ratio of the
total rcattered flux to the incident flux on the particle, that
is, on a section of area wre if the particle is spherical.
These definitlons are given with greater precision in Appendix 1.
an efficiency factor for attenuation is alsc defined; this
differs from the preceding only 1if the particle is absorbing,

in which case one has:

= J + .
Qattenuation Qabsorption Qscattering:

N

(=]
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This altenuation factor is linked to the amplitude S(O)
= by an equation developed primarily by Van de Hulst (1949, 1957)
(and known as the "extinction formula"):

Q.. =— R {s(0)} , (2.25)

att. a2

with Sl(O) = 82(0), which with reference to Eq. (2.12) is

expressed as:

=0
~

n
; Qs = ——:3 nzl (2 n+1) Re {a.n + bn} . (2.26)

-
i

i
=

B The integral, extended to 4n steradians, furnishing the scatter-
( ing efficiency factor is (cf. Appendix 1):

1

m

Q =

scC o 02 ffh“(il (6,¥) + i2 (9,@')) ae

or, i1 vhe phenomenon is one of revolution:

n

- L Gy (0 vy () et ae (2.27)

Debye (1909) has shown that, related to series, this integral is
ultimately reduced to (cf. Van de Hulst, p. 128): »

2 5 2 2
Q. "?En% (2 ne1) (o 1%+ 0 1%) (2.28)

lag ]2, |bn|2 being the squares of the mcduli of the Mie coef-
ficients.

When the index of refraction is real, it has been noted
(Fig. II.1) that images 1in the complex plane of numbers ap and
b, are on a circle with radius 1/2. Geometrically it may be
seen that for any value for ap or b, one has:

8n 1 2
- = = R (&n) 4
Re &y, ) &:l[ ! or \an‘ ¢
n
The real part of an 1s numerically equal to the square of

its modulus. Eqations (2.26) and (2.28) are thus mathematically
identical, which should necessarily be the case since 1In the
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absence of absorption, the attenuation is duc only to scattering.
The following discussion will not be concernec with nonabsorbing
particles, and the factor Qges €qual to Qatts Will simply be
noted Q.

After Eq. (2.25), variations in this factor with the size
parameter a may be studied on the basis of development of the
funotion S(0)a~2 in the complex plane. This quantity has been
computed for all the sizes and indices mentioned so far. As an
example, as Fig. II.9 shows, the function S(0)a~2 is represented
in the complex plane by a spiral turning around a point Im = 0,
Re = 0.5, as the current parameter o increases. Contrary to the
example given by Van de Hulst relative to the index 1.323 (Van
de Hulst, 1957, p. 176), the spiral is more regular, which is
characteristic of indices close to 1; undulations, retro-
gressions and ultimately retrograde loops occur for high a
values when the index begins to differ sharply from 1. The
"speed" at which the spiral progresses depends on the index:
for example, when a increases from 0.2 to 200, a single turn
is described if n = 1.02, and five turns if n = 1.1C. 1In
actuality, the angular speeds in the various cases are equal if,
rather than a, the current parameter is assumed to be p = 2a(n-1).
(The values for p for various angles of rotation are indicated
in the figure.) Factor Q is equal to four times the real part
of function S(0)a~2: it reaches an initial maximum when p 1is
close to 4, then oscillates around the value 2, the amplitude
of the oscillatifg decreasing as the spirals tighten. The
limiting value 2 is that furnished by diffraction (see below),l3
whose laws are applicable if the particle is sufficiently large.

1omhe convergence of series (2.28) and (2.26) toward 2 does
not appear to have been proven mathematically.

13It may be recalled that the fact that a particle scatters twice
as much energy as 1t is able to intercept, due to its geometrical
cross section, is known as the "extinction paradox" (or "Babinet
paradox"). This paradox is quite apparent, and arises from the
initial hypothesis stating that the distance of observation is
much larger than the size of the particle. Van de Hulst play-
fully 1llustrates this phenomenon by taking the example of a
flowerpot on a window ledge projecting a shadow, whose coefficient
is equal to 1, while a meteorite of the same size intercepting
the light emitted by a star has a coefficient of 2.
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Fig. II.9. Representation of the function S(0)a” -

in the complex plane. a varies from 1 to 200.

2.2.8. Efficiency Factor and Intensity at 0°. Limiting Values
(Diffraction)

The intensity function is obtained by taking the square of
the modulus of the amplituﬂe (2.1); since S{0)a~<c tends toward
0.5 as o increases, 1(0)a~" will tend toward 0.25. Thls was
the subject of Remark c¢, which may be interpreted in a simple
manner: the intensity diffracted in direction 0° (central spot)
is proportional to the square of the surface of the diffracting
opening and the amplitudes for the diffracted wave in any given
direction):

24, (a sin 8) 20

2
s, (8) = s, (8) = —g.—' T asin 6

2

When 6 tends toward O, Jl(Uﬂ/U tends toward 1/2 and 1(0) =
= IS(O)[2 tends taward of/4. Before converging toward thelir
respective limits (.25 and 2, the osclllations of functions
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1(0)a" % = |S(O)[2a-u and Q = Re{S(2)}a"° are concomitant; the
maximums and minimums of the two functions occur at the same o
values, which actually correspond to fixed values for p,
approximately marked on the spiral. More precisely (as com-
puted with Eq. (2.29) below, which is applicable if the index
1s close to 1), these values are:

7.63 first maximum
14.00 second maximum

4.09 first maximum
10.79 second maximum

2.2.9. Van de Hulst Approximation

Van de Hulst has shown (1946, 1S47) that the efficiency
factor may be expressed simply as a function of the parameter
p by:

sz-ho_lsinp+ho-2(l-cosp),__ (2.29)

when the index of refraction is very close to 1 (1 % €); in fact,
even when the index differs sharply from 1, this expression
remains valid in most cases. Filgure II.10 shows that the

curve obtained from Eq. (2.29) constitutes a satisfactory
approximation, even when the index is 1.15, the representative
points being computed by means of the exact equation (2.26).

When n is high, several systems of small oscillations correspond-
ing to undulations or loops in the spiral are superimposed over
the periodic oscillations 2m. This expression for the efficiency
factor Q is a valid approximation throughout the Mie range, since
p 1s any value, the sole condition being that |n-1| is small.

At the 1limit, when p increases Q tends sharply toward 2. Inverse-
ly, when p tends toward 2ero, that is, when the size of the
particle decreases, expansion of Eq. (2.29) yields:

QD"O = (1/2) »

- (20 o e (2.30)

As will be seen briefly in the following discussion, this
formula coincides with that resulting from the Rayleigh-Gans
theory, which also ussumes n to be close to 1; but it differs
from the corresponding formula given by the Rayleigh thecry,
where the more restrictive condition a << 1 must be met.

2.2.10. Efficiency Factor in the Rayleigh and Rayleigh-Gans /31
Ranges

. By combining Eq. (2.27) with formulas (2.15) giving the
intensity functions for Rayleigh s~attering, one obtains:
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Fig. II.10. Efficlency coefficient Q adapted to a
logarithmlc scale as a function of the parameter
p = 2a(n - 1), for two refraction values.

Q"—}‘é' I'D AS (1 + ccae) sin €040 (2‘3}_)

the integral defined by the function 6 has a value of 8/3 and thus:
Q= 8/3 RS (2-32)

in this equation the k—u law again applies, but it is in
contradiction wlth the enaglawsupplied by expansion (2.30).
In cases where n is assumed to be close to 1, the Lorentz term
A is replaced by (2/3)(n = 1), in conformity with Eq. (2.16),
and the result 1s:

c=2 a0t (2.33)

In the range of applicabllity of the Raylelgh-Gans approxi-
mation, the t1ntensity functions are multiplied by the factor
F(8) = 3°(2asin@/2), which thus occurs in the integral.
peing replaced by its previous approximate expression, one may
write:

Ad . P

N, - N . I
Wy st o i %) (1 4 ccs® o) cin Ao d 2y (2.34)

¢ =
Y

5€
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This time the value of
the Integral defined
depends on a: 1f o
tends toward zero, the
result 1s once again
the preceding equation
(2.33), valld when n

7] is close to 1; on the
other hand, if a is
large, 1t has been
shown that the value
for the integral is
(9/2)a~2, and the
result 1is thus: Q =

= 2(n - 1)a®, which
closely corresponds to
the limiting equation
(2.30) of the Van de
Hulst approximation.

0.00

0.001

To draw a practical
3 conclusion, the differ-
o ence between the exact
| values for Q calculated
by means of Egq. (2.28)

Fig. II.11. Efficlency coefficient and the approximate
Q in a range of low p values (loga- values calculated by
rithmic scales) for various indices. Eq. (2.29) is generally

very small, as has been
stated, except when o
is small. With equal
values for p, it is obviously all the more important that the
difference between (n - 1) and 0 is greater. Figure II.1l
shows that for p values less than 0.5 there 1s reason to use
the exact equation (2.28).

3. Scattering by a System of Polydispersed Particles

The term "polydispersed system" 1s taken in 1its generally
understood sense, denoting a system of particles of the same
shape (spherical in the present case) and the same nature (and
thus the same index), differing from each other only 1in size.
Their number varies with their size, according to a law of
distribution.

First (Section 3.1) there will be a discussicn cof the
formulas permitting calculaticn of the scattering properties
of a single system. Second, the predictions which may be made

(a1
-3
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concerning the results of the computations will be examined
(Section 3.2), for cases in which the distribution 1s assumed
to follow a power law. This leads to a consideration
of the significance of the computations, taking into account
the fact that these must be carried out with the assumption

of mathemnatical limits whose physical reality is not readily
apparent. Finally, by comparison with exponentlal laws, other
types of distribution are consldered.

3.1. Calculation of Scattering Properties

The particle population is characterized by a distribution
function established with reference to a geometrical parameter
characterizing the size: the following discussion will use the
parameter o, that is, the relative size 2nr/) which comes into
play in scattering calculations and preserves thelr generality.
(In applications, the radil of the presumed spherical particles
being fixed, the change in wavelength 1ls translated by an
inversely proportional variation in a.) The distribution func-
tion F(a) corresponds to a frequency or probability of occurrence:
if the entire population includes N particles with sizes ranging
from zero to infinity (or from a minimum size oy to a maximum
size apy), the quantity:

a
feﬂu)du
b

=i

is the relative probability of occurrence of particles whose
size parameter is between aj] and ap; the function F(a) is
assumed to be continuous and integrable within the interval
0, @ or ap, ap-

The additivity of the intensities scattered by randomly
distributed particles simplifies computation from a formal
standpoint; it is understood that in practice the integrations
predicted below are replaced by summations, the size incremen-
tatlon da being that ruled by the preparatory computations for
individual indicatrices (cf. Section 2.2, Part 2).

3.1.1. Scattering Indicatrix for a Glven Number of Particles

For each angle, the intensity functions 1;(8) and 1,(8)
for the particle system are given by the integral of the
products 11(6, alF(a) and 15(8, a)F(a). Normalizing to the
integral of the function F(a) between the same limlts renders
the calculations independent of the total number of particles;
otherwise, they would depend both on the distributlon and on
the limits adopted. From this it beccmes possible to compute:
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oM
[ ¥la) i (8,0) da
a
i (8) = —=

1 ’
I% (3.1)

F (a) da

Qa
m

and 12(6) in the same way. The total intensity function iT(G) =
= (1/5)[17(8) + 1p(8)] and the rate of polarization [1;(6) -

- ig(e)]/%il(e) +715(8)] are determlned from these equations.
For application, 1f N is the total number of particles in a

unit volume, the volume scattering function 1is obtained
simply by computling (cf. Appendix 1, "Definitions"):

The use of a given value for » influences the limits ay and oM
to be used.

3.1.2. Mean Efficiency Factor

This is defined for a system of particles as the ratio of

the sum of the effective cross sections to the sum of the

areas of the geometric cross sections. For the spherical .
particles considered, using the parameter o, one has:

~
w

M4 L2 ' (3-2)

It is also possible to use the parameter o = 20(n - 1), which
simultaneously combines relative size and index. This 1is to
advantage when the index is fairly close to 1, since in this
case the Van de Hulst formula (2.29) will be applicable; this
equation is simple enough that the integral in the numerator
of Eq. (3.2) may be calculated numerically wlth a very small
step 0.

3.1.3. Normalized Indicatrix -

In the final analysis, jin comparing the results obtained
by varying the law of distribution and 1ts 1limits, it 1s less
practical to fix the number of partilcles (as in Eq. (3.1)) as
1t is to fix the total scattering coefficlent. This case

corresponds to examination of sets of particles whose number

5Q
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and distribution vary, but which show the same overall scatter-
ing effect; in the present case, unitary scattering. The normalized
scattering coefficients (cf. Appendix 1, "Definitions") are
calculated by:

IGM

a
m

- 1 .
8) = =
81( ) " IGM Fla) Q (a) o° da (3.3) |

Qa
m

NG)il(BA) da

and for (8) by the corresponding equation; B(8) is then

calculateé by means of the sum B1(8) + Bp(6) divided by 2.

Computation of Q being performed sinultaneously (3.1.2), the

inverse of Q furnishes the total area of the geometric cross

sections of the particles necessary to yleld this total i
unitary scattering. For example, if Q = 0.5, the total

particle cross sections present within a volume of

1 m3 must be 2 m€ in order for the scattering coefficilent b

to be 1 m—1l.

3.2. Predictions of Results of Computation

These are possible based on the following two polnts:

-- variations in the shape of the Mie indicatrix
for increasing sizes are replotted in geﬁeral form by
means of graphs of the functions 1(8)a~"; the previous
observations on the numerous gradients of the curves
for various angles permit such predictions.

-- particle distributign according to size 1is assumed to
follow a Junge law~' cxrressed by a power function:

vy

F(a) = constant-a ™

3.2.1. Convergence Conditions: Influence of the Upper Limit cn
the Indicatrix

Taking into account the form glven at F(a), the iTée)a'u

functilons already represented exactly correspond to a a

lult will be seen later that functions of this type satisfac-

torlily corrcspond to actually observed marine particle distribu-
tiens. In any case, more complex dlstributlons can always be
broken down and approximated bv such forms within each ranre, =t
least theoretically.
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distriobutions, and integration of these functions makes use of the
numerator contained in Eq. (3.1) or (3.3). With the exception
of normalization, it furnishes the ﬁndicatrix for the population
considered (characterized by the o=" law). It can Immedlately
be seen that the integrals for the various angles will all con-
verge, since the mean gradients for the curves are close to

-2.3 (cf. Section 2.2.1, e), with the exception of the integral
corresponding to the angle 0°, for which the mean gradient for
the curve 1s zero. To put it another way, beyond a given limit,
the consideration of increasingly large particles will not
change the form of the resulting indicatrix except for the

angle 0° and angles in the immediate vicinity, where the inten-
sity will continue to increase. This phenomenon is shown by
Fig. III.2 (Part 3), where the upper limit 1s increased from 50
to 200 without any appreciable change in the indicatrix, except
at 0°, and also at approximately 175 to 180°. This is no longer
the caie if the upper limit becomes less than 50 (A. Morel, 1972a,
Fig. 2).

In genera%, functions 1(8) increase with the size o
according to a“ + p laws, where p 1s the mean gradient read on
the graphs (log-log scale) such as II.3; by way of review (cf.
Section 2.2.1), these gradlents have the values:

p = +2 for any given 6, if a is small;
for 8 = 0°, even when a is not small, on condi-
tion that p = 2a(n - 1) is less than 4;

for 6 = 0° when o is large (p is greater than 4);

o]
]
(&)

1’

-2.3 for 8 # 0° when o 1s large;

(or =2)

-2 <p <1 for & = 180°, when o is large; the value of the
gradient actually depends on the index (more-
over, it is difficult to estimate an average
value).

h+p-m . .

Functions F(a)ip(a, 6) are o functions if -m 1s the

exponernt of distribution; the integrals to be cocmputed are

thus functions with the exponent 5 + p - m. These lategrals
will converge absolutely 1f:

5+ p-m<2Q0O (3.4)

inequality to zero does not result in convergence, the integral
being a logarithm.

If the progressive values for the integrals: /34

a
[ ¥(a) i’I‘ (8,a) da (3.5)

3




are glven as a function of o for varilous angles (Fig. II.12),
one finds that:

a. When o 1s small, no matter what the value for 6 may be,
all the curves increase by a gradientd® whose value is 7 - m
(that is, 3.5 and 2, respectively, for the two cases presented);

b. For o values whose increase is proportionate to the
decrease in 6 (that is, for a values corresponding to the
maximum of the curves i(e)a'“, cf. Sections 2.2.1 d and 2.2.3),
the Integrals converge asymptotically and the curves show an
asymptotlc plateau (when condition (3.4) is met);

¢. For the angle 0°, where - = (0, there is no plateau if
m > 5; otherwise, the integral wilil continue to increase with
the gradient 5 - m (that is, a gradient equal to 1.5 for the
higher figure and a gradient tending toward zero for the lower
figure -- a branch of 2 legarithmic curve -- con ituting &
limiting case);

d. For the angle 180° the variaticns are more complex due
preclsely to the fact that the mean gradient p has a tendency to
disappear as a increases (increasingly as the index becomes
higher, which increases the reflection; cf. Section 2.2.5);
in general, the partial integral resumes its increase after. a
plateau.

In conclusion, since the difference between the various
plateaus characterizes the resulting indicatrix, the following
predictions may be made:

-- 1f every curve has a plateau (when m < 5), the difference
between the final values no lenger changes and thus the
indicatrix is no lcnger modified if the upper limit of
integration continues tc be raised.

== 1f 2.7 <m < 5 the conclusion remains the same, except
in regard to the angle 0°; in other words, ccrnsidera-
tlon of increasingly large particles does not change the
shape of the indicatrix except at extremely small angles
(and alsc toward 180°), where the increase continues.

lnThe slight benis which may be detected in the ascending

curves (in the neighborhood of a = 2, for example) are artifacts
due to the change in step (da) in computing the integral, since
this step is determined by tre preliminary calculations for

the Indicatrices (cf. Sectlon 2.2).
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Fig. II.12. Progressive values for
integrals as a fur.ction of the upper
limit. The distribution expcnent

has the values -32.5 and -5, respec-
tively, the 1ndex of refraction
remaining 1.05 In both cases. The
lower limit for the calculatlons 1s
0.2, but the curves are plotted after
the first *'ntegration step, l.e.,
beginning .t o = 0.4%. The upper limit
is 200. [Key on following rage.]

-~ if m < 2.7 there
is no mathematical
limit, and the cal-
culations are
meaningful only if
there 1s a physically
real 1limit.

/35

3.2.2. Role of Small
Particles: Influ-
ence of the
Lower Size Limlt

on the Indicatrix

It has Just been
seen that the calcula-
tions retain their
significance within
certaln conditions
which have been stipu-
lated, even though the
upper limit has been
set arbitrarily. An
analogous problem 1is
presented with regard
to the lower size limit.
This quantity 1s
physically unknown and,
here again, the lower
1limit used in the cal-
culations can only be
arbitrary. It 1s
necessary to predict
the influence on the
indicatrix of
failure to take
extremely small part-
icles into consideration.
Theoretlcally the cal-
culations may be performed
beginning at a hypothetlcal
lower limit constituted
by particles of "zero"
size. In an analysis of
the effect of truncationl

15 Or the effect of

micevaluaticn of the dis-
tribution laws to be used
for small particles whose
[continued]
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Key to Fig. II.12:

a. Logarithmic scales
b. Exponent
¢. Index

if integration 1s performed beginning with a finite 1imit which
is not zero, two cases should be distinguished:

Case in Which the Particles Overlooked Belong to the Rayleigh Range

In this case integration 1s performed with a
lower limit ap = €, which at the most is equal to 1. An unfavor-
able hypothesis conslsts in assuming that the unknown particles
continue to be distributed according to the same a~M law; this
hypothesls leads to continually increasing numbers of particles
(and to an infinite number for size "zero"). The same scat-
tering law is applied to all these particles (cf. Sectlon 2.2.2),
that 1is:

i (e)] o 4642 1
i (e) cos? 8
For each value of angle 6, over the range considered -- for
1p = 1/2(i1 + 1i2) -- the integration is written:
€ 2 6-
1/2 [ £ a”™™ (1 + cos?0) da . (3.6)
o

This system of particles thus shows a Rayleigh indicatrix,
expressed by:

i (0) = 1/2 A2 (14 cos® 8) = Tem

T-m °© 4 (3-7)

that is, an indicatrix of figite size, on condition that the
following inequality is metlO:

7 -m >0 (2.8)

15(zont'd)
presence is only probable tv extensicn, since they

ire not otserved.
16
This 1s obviously the reverse condition to thau expressed by

Rayleigh range. ’ e gradient within the

6u
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otherwise, one obtalns ip = «. In other words, if there is
truncation in the first case, the quantities 1ig(6) overlcoked
are finite and the resultant error can be computed. The error
is infinite in the second case and the calculations are
meaningful only if a known physical limit which 1is not zero
exlsts.

In the first case, the neglected terms vary with the angle
according to the Rayleigh law (that 1is, in a ratlo of 1 to 2).
If these are compared to the extremely asymmetrical indicatrix
obtained when the upper limit is 200, it may be seen that the
possible error 1s maximum for angles equal to or greater than
90°. As a relative value, this error is obtained by forming
the ratio of the imtegrals between 0 and 0.2 and between 0.2
and 200 respectively. To refer again to the two examples
illustrated by Flg. II.12, the error resulting from truncation
(at 0.2) is less than 0.1% if the value of the exponent 1is
-3.5, and on the order of 1% if this value is -5 (for angles
of 90°, 140° and 180°; the errcr is obviously less at smaller
angles). This order of size rerains valid in other cases.
Appendix 2 gives the values for various indices and for
exponents varying from -3 to -5, computed by means of Eq. (3.7).
These values are alway. negliglble compared to those furnished
by integration within the size interval 0.2 to 200.

In conclusion, the lower limit of this Interval may be
considered to be fixed at a sufficiently low value. The
indicatrix thus obtained is significant, since particles with
a size less than this value no longer have any appreclable
influence (provided that their law of distribution meets con-
dition (3.8)).

Case in Whilch Truncation Occurs for Greater Sizes

Here the effect may be directly predicted from ararhs
such as II.12. In particular, if the value of the lower limit
is such that the curve relative to a given angle 6 hLas begun to
form a plateau, the effect will be conslderable. For thls angle
the overlooked quantities may thus become greater than the
quantities taken into account in integration, and the final
value (when a = 200) is consecutively decreased. Since plateaus
occur for a values which become greater as 6§ beccmes smaller
(cf. Section 3.2.1, b), this decrease flrst affects the value
at an angle of 180°, then that at 140°, etc. The asymmetry of
the firal indicatrix is reinforced as the lower 1limit ap 1s
raised:

if o, = 1, in relaticn to the values previously obtalned

m ~n~ -~ .. . ' - ~A~nO
with ap = 0.2, it appears thet the values at §o°
140° and 180° are decreased from 10 to 20%.

6
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if «

m 2, the decreases at the same angles change from
approximately 30 to 50%, while at 40° there
appears a slight difference (-10%).

if ap = 10,the effect js still marked and in additlon extends
to a broader range of angles; a notable difference

appears beginning with an angle of 20°.

Figure II.13 reveals this reinforcement of the overall
asymmetry due to a decrease in the values at large angles, the
values at small angles (0° and 2°) remaining unaffected. This
figure repeats the upper part of Fig. II.12; in addition, it
shows the curves obtained when the lower 1imit assumes the values /36
2 and 10 in turn, all things otherwise being equal. This
development is more completely illustrated by the complete
plotted indicatrices presented later on (Fig. III.12, Part 3).

3.2.3. Total Scattering; Influence of Limits on Computations

Here again the problem is to determine whether the cal-
culation of tctal scattering is meaningful when only one part
of the particle pcpulation 1is considered; the upper and lower
1imits are set to meet the needs of calculation, but dc not
represent any physical reality. This time the reasoning,
analogous Lo that given above (3.2.1 and 3.2.2) must be applied
to the integral:

a (3.9)

which, with the exception of one factor, expresses the total
effective cross section of particles distributed according tc

the law F(a) between the minimum and maximum sizes oy and opy-.

Oﬁe need only recall that the efficiency factor Q varies as

¥ within the Rayleigh range (Eq. (2.32)) and as a2 within the
Raylelgh-Gans range (Eq. (2.35)), and that it 1is, on the average,
independent of o withiln the Mie range and within that of
diffraction (Section 2.2.8).

Without goling into aetall, it can thus be seen that in
regard to the influence of the upper limit (within tne Mie
reange), the total scattering tends toward a limit if the integral
for F(a)aé converges, that 1s, if the total particle surface
area 1ltself tends toward a 1imit. This implies that the con-
dition:

(B

(2.1C)
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Fig. II.13. Influerce of the lower
1imit; the dotted curves are taken
from Fig. II.12 (upper part,
exponent -3.5). Tne other two
groups of curves are obtained when
the lower limit of integration 1is

at 2 and 10 in turn. The
three unmarked curves correspond
to an angle of 180°; they are
characterized by a rapid increase
for high a values.

Key: a. Logarithmic scales
b. Exponent
c. Index

o may also be
cross sectilons
is finite only
the limits 3 <
reallzed.

if m < 3.

e

is met if the distributilon
is as previously expressed
by F(a) = Ca™M. The total
surface area and thus the
scattering increase with
the logarithm of the upper
limit oy when m = 3.

In regard to the lower
1limit (within the Rayleigh
range), the integral between
0 and ay, corresponding to
the overlooked particles,
is applied to an equation
using ab-m, just as 1n
calculating the indica-
trix. As a result the
same condition (2.8),

m < 7, assures a finite
value for this integral.
For various exponents and
indices, calculations show
that the value of this
integral between the
limits 0 and 0.2 remains
completely negligible

in relation to the value
of the integral for the
particles taken into con-
sideration (that 1is,
petween the size limits
0.2 and 200). These values
are given in Appendix 2.

As has been seen
(Section 3.2.2), an
infinite number of particles
may nevertheless yleld a
finite indicatrix. In a
similar manner, the total
diffusion, or more preclsely,
the tctal effective cross
section, shown by partlcles
whose size 1is between 0 and

finite, while the tctal area of the gecmetrical
of these same particles 1is not; the latter factor
Thus when the exponent remalns between
m < 7, the case under conslderation is actually

M
~l
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Since this procedure has been performed for angular values,
the progressive value of the integral (3.9) may also be
expressed as a functlon of the upper limit; Fig. II.14 furnishes
an example of this type for various values for the index and
for an exponential value of -3.10. The value of the initial
gradient of the curves 1s 7 - m; it then assumes the value
5 - m and finally tends to vanish; the curves then show an
asymptotic plateau, since the convergence condition 1s met.

The plateaus begin when Q becomes (on the average) independent /37
of a, that 1s, for o values which vary with the value cof the

index; in reality, these values are related since at this point

the parameter p = 2a(n - 1) 1s equal to 4.1 (cf. Section 2.2.8

and Fig. II1.10).

200
~F f Floe). 2. Qox). d ox 1

0.2 —

=

LOG,
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a EXPOSANT =-3.10
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N

Fig. II.14. Progressive value for the integral ylelding
the effective cross section (3.9), as the upper limit
increases to a final value of a = 200. The curves cor-
respond to the indlces of refraction indicated and to a
single value for the exponent of particle distribution.

Key: a. Exponent
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Fig. II.15. In this figure, which is analogous to the preceding,
the variable a is replaced by the variable p. The curves cor-
respend tc the indicated exponential values; these are normalized
to their asymptotic values (100%). The scales are logarithmic.

Key: a. Expcnents
b. In %

In measurements where the Van de Hulst equation (2.29) is 4;@
a justifiable approximation (which is the case with the index
values used here), a single calculation is sufficlent, the
variable p replacing @. The curves given in Fig. II.14 are
actually a single curve plotted with a more or less expanded
scale for the abscissa. As a result of this observation, the
integrals computed in thls case with the varilable p are
represented by the curves glven in Fig. II.15, each of then
corresponding to a different exponential value. The asymptotic
values of these integrals when the upper limit increases to
infinity may be computed (when conditicn (3.10) 1s satisfied);
these values are used in normalizing the graph; however, the
curve corresponding to the exponent -3 must be positicned
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arbitrarily, since it has no asymptote. In all the curves the

bend occurs when P exceeds 4 (see Appendix 2 for calculation
of the asymptotic values).

3.2.4. Summary Dealing with Range of Validity of Calculations

The term "range of validity" is here assumed to have a
precise meaning: it 1s the range within which the calculations
retain their significance independent of the values given to
the upper and lower size Timits, This therefore assumes
that the quantities calculated when the size limits are made to
approach zero or infinity are infinite. Under these conditions,
misapprehension of the physical limits does not invalidate the
calculations. If by extension one assumes that a single law
of distribution (exponential function) governs the population
no matter what the size may be, the conditions for validity
pertain to the exponent of the law. As has been seen, these
conditions differ depending on the quantities to be calculated.
They are collected in the following table, which indicates,
with regard to the value of the exponent, whether the quantities
calculated between 0 and am (influence of the lower limit) or

between ay and (influence of the upper limit) are finite or
infinite.

It may be noted that the conditions relative to the lower
and upper limits respectively are mutually exclusive in regard
to the number, surface area or volume of the particles. In
other words there is no range of validity as defined above;
calculation 1s possible only 1if there is evidence that physical
limits actually exist. The same is not true for the magnitudes
relative to scattering: the two categories of conditions may
simultaneously be met within some exponential intervals; this
is summarized in the following diagram, where the range of
validity 1is represented by the shaded ares.

i (e)
8 ¥ C

Indicatrix
1 (0)

Effective cross section

Exponent 2.7 -3 -5 -7
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Influence of lower limit ___J

Indicatrix e Frnind -
i(0), for any given © al
Total scattering, . e finiv]< o -
effective cross sections, |
Total volume — hai 00 =
a

Total area, 860:__4pa»|<m!~«— |
metrical cross sectiond |

Total No. — @@t |

|
|
of particles ' | |

|
H——OQDHOD
Total No. ——~ o’)»lg‘mi -L—-——l l l
of particles 1 | | o
. Total area, geo- —-L o> wlafini 4----!

metrical crass section! | |

Total volume :—w%—w>%éalnn_

o i
Total scatteringL“J_w,Lﬁiw,wJ
effective_cross sedtionds |

|

Thdicatrix: | o
1(6) With 9= 0’ e 0 > afifi e —
i(6) with O

Influence of upper limit

e e e e

Xey: a. Finite

3.2.5. Extension of Distribution Laws Differing from the Junge Law

The preceding conzlusions on the validity range, at least as
presented, are valid only for distributions expressed as exponen-
tial laws. However, they may be re-examined and extended to
other types of distribution. The fact that the previously
discussed case is easily treated mathematically makes it particu-
larly sultable as a reference case. It 1s futile to consider the
case of distributions according to functions of the crenellated
type (rectangular, triangular, etc.), for which the problem of
1imits and the significance of the calculations does not occur.
The case of normal gaussilan distribution is of this sort, as
will be seen later.

On the other hand, some discussion should be given to the
case of a continuously decreasing distribution which nevertheless
differs from the exponentlal law. The problem here 1s thus to
choose a plausilble distribution, that is, one which glves an
approximation of the observed decrease within the size interval
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accessible to experimentationl7. Beyond the 1imits of this
interval, however, the hypothesis on which the exponential laws
are based no longer applies and the new distributions considered
behave differently. To describe particle populations

(natural ov artificial),use has frequently peen made of the
exponential function:

Fy (o) = A exp(=By o) o (3.11)

or, more often, the gaussian—log function (or log—normal)'function:
7, (o) = Ay exp (42(m5u/3F) (3.12)

where o is the value corresponding to the distrivugion maxi- /39
mum, and Bp is the "geometrical standard deviation. For

marine particles, exponential laws (or laws of exponential type,
such as the Weibull law) have been proposed py Carder et al.

(1971). J.R. 7aneveld and H. Pak (1973) also used this dis-
tribution, which has beern found to be suitable for all thecreti-
cal calculations due to the convergence at the limits, as will

pe seen below.

Consideration of the log-log graph of the precedlng
distributions {s practical for the purpose of comparison with
F(a) = Aa~T exponential laws. The first remains exponential;
two pcints determine 1t completely. The second one simply
becomes & parabola; two points are not adequate to degermine it
and a third is necessary, or the position of maximum o must be
rixed arbitrarily. It is vossible to verify that the normal
gaussian distribution peyond the maximum is represented by an
exponential curve (but with a stronger gradient +han that of
expcnential function (3.11), since the %rgument is double). In
Fig. 11.16, the log-1log graph of the o~ exponential function,
chosen as a pbasis of comparison, i{s represented py the line
with a gradient of -4. The other distributions were macde toO
intersect the preceding pcth at a = 10 and o 100, and choice

was made to center the gauSSLan—logarithmic distribution and
also the normal distribution on o = 1.

On the side corresponding to small sizes, tne exponential
distribution tends toward & finite value with zero gradient,

and the convergence condition (3.8) is still met. The gausslian=
logarithmic distribution tends toward zero and the negetlve
gradient (between o = 1 and o = 1C) 1is necessarily weaker than

e

lYThis observation concerning the granulometric analysis of

particles, as well as the choice of numerical values for the
distributlons made below, anticipates the discussion at the

peginning cf Part 3, YO which one may refer.
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that of the secant representing the exponential law; condition
(3.8) 1s met a fortiori when the exponential law observes this
condition (7 - m > Q). Exponential laws with a high negative
exponent are necessary so that small particles, in sufficiently
- high numbers, have more than a negligible role in the calcula-
; tions; 1n practice, the distributions under consideration assign
> these laws a low number which corresponds mathematically to a
: quasi-truncation for scattering. The conclusion is identical
in regard to gaussian distribution.

o™ Due t¢ the shape /40
- of the negative gradi-
ents on the side cor-
responding to large
1 sizes, which are con-
R tinually increasing and
are greater than the
righthand gradient,
4 the convergence con-
ditions are met for
any given scattering
angle 6 (Section 3.2.1).
The frequency of occur-
rence of large particles
: 3 Exponentielle H is lower with these
s ] . coom i \\ laws than with the ‘
3 0" Y 2\ - corresponding power
“‘I Ty laws; in practice, as ,
o o _ in the preceding, it
is equivalent to trun-

] Fig. II.16. Log-log graph of various cation. Figure II.1l7
. types of distribution with coinciding illustrates this effect,

values for a = 10 und a = 100. making 1f possible to
compare the indica-

?eyéower low: Flo) = 1on+“a‘“ ziices obgainid Wi?ghm‘
. AW = e gaussian-logari ic
2. Gausslan-logarithmic law: law with those obtained
. 1ot B -5( )2 with the power law; for
wtEn s e iy s P (3.120) the former, the dist-
miSl e 08 ribution is extended to
all sizes from 0.2 to
200 (for o), while for

L

P lei puissonce

2 Gausso- log

3. Exponential law:
Fla) = 127 exp (10.3) exp (=Ba)

. .11b the latter the distribu-
With B2 N30 Legc (3 ) tion 1s truncated below ‘
. ap = 10 and above ay =
L. Gaussian law: ='100. Superimposition
F(u)-zf'up(A)uptmﬁ) of these two indicatrices

shcws that they do
actually coincide
(which is not entirely
the case for the pola-
rized components 1
and 1p).

with A = "~ '120) . Log, 10
B= {lcg, A) 9°
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of g T 7 ] It would be futile
a ECrELLES LOG. to glve further cal-
culaticns and examples
of this type, given
the arbitrary nature of
- the laws used, especilally
in regard to the posi-
tion of the distribu-
T tion maximum. Suffice
it to say that with
exponential laws and
especially log-normal
laws one obtains results
g very close to those
resulting from applica-
tion of the equivalent
. power law (and in the
case of log-normal laws,
results which are as
close as desired,
depending on the param-
eters chosen). On the
C INDICE T .0S0 other hand, this is
never the case with
> the gaussian law, even
fruncated beyond the
maximum.

b’ crRuUsso-LaS

N

]
RLFPHAR

Fig. II.18. For the preceding

gausslan-logarithmic distribution,
this figure shows the progressive the
values for the integrals:

Finally, between
sizes where the
distributions coincide
(10 and 100 for the
JOR@) Ly (e) aa example given here),

the curves show a
convexity; as a result,
these distributions
tend, more than the
power law, to favor
particles of inter-

as a function of the upper limit
a, and for tre same values for
the angle 6 as previously (Fig.

I1.12). mediate size (20 to
50), which play a
Key: a. Log s-zales role of comparatively
b. Gauscian-log greater importance
¢c. Index in scattering. An

example of this result
will be given later on
(Part 3, Section 3.1.2).

T4
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Figs. IIL.17. Indicatrices obtained with gaussian—logarithmic
distribution (Eq. (3.12b), Fig. T1.16) and with Junge distribu-
tion with en exponent of =4, truncated below a = 10 and above
o = 100; the indicatrices are plotted with the decimal log of
the normalized scattering coefficlent T(8) expressed as a function
of 6. The values for B1(8) and B,(98) corresponding to the vertical
and horizontal polarized componen%s are represented by dots and
crosses, respectively.

The points indicated by arrows correspond to the calcula-
tions performed by O. B. Brown and H.R. Gordon (1971) for the
same exponent, using the limits 8.6 and 86 (diameters 1 to 10 um
A\ = 488 nm) and with the index 1.05-0.01 i. For comparison, the
values were recomputed so as to be given in the form of a nor-
malized coefficient B(€). The upper limlt is 86 rather than
200, but taking the exponent into account, the configuraticn is
virtually asymptotic (e¢f. Section 3.2.1), and the results are
found to be comparable.

Key: a. Index

t. Gausslian-lof
c., Limits

d. Efficiency

-3
o
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PART 3 /41

|

Tntroduction

calculation of thesoatteringproperties of a polydispersed
system involves, on the one hand, parameters related €O the law
and limits of distribution, and on tne other hand, the relative
index, which will be termed the "mean" index since it 1s assumed
to be the same for all the particles. Various numerical appli-
cations have been presented as examples in the previous expan-
sions, butb without any discussion of the choice of values
attributed toO the parameters used. A few theoretical cases
have been systematically treated for purposes of ccmparilson
with the experimental results, and it was necessary to make &
choice of values which might be examined here.

The value assigned to the vaerticle index °Ff refraction
could hardly ve anything more than hypothetical, since no direct
measurement SEEmS t£o have teen made. On the pasis of the mineral
content of particles in suspension (calcium carbonate, silica,
alumino-silioates, various nhydroxides, etc.), sssumed to DE€ in
crystalline form, it 1s possible to determine an average index
value. Values frequently given o°n the basis of these ccn-
siderations are on the order of 1.15 or 1.201 (relative values
in relation tO water, that is, 1.53 to 1.60 1in absolute values)s
calculations have been made for clays in suspension yielding

the value 1.15 (and an imaglnary part equal tc 0.001; H. Pak.
K.V. 7zaneveld, G.F. Beardsley, 1971). Eowever, first cf all,

it is probably not realistic tc attribute the index for the
crystalline form to the entire particle, even if 1t 1s pasically
rineral. Certain irsoluble subscances or precipitates ray be
present in strongly nydrated colloidal forms, or agein, the
mineral part of a detrital particle may be cnly & sheli, for
example; such mineral particles would have & nrean' index
closer to that of water than that determined frem the strict
ccmpositlon (excluding water). In zddition, there ig always &
consideratle proportion cf organic substances 1in the suspended
material, and the index fcr these substances 15 very close to
that of water. Recently K.L. Carder et al. (1972) used measure-
ments of scattering in unicellular algal cultures (Isochrysis
galbana) to determine the relative index, which they found to be
on the order of 15026 to 1.03¢€ for this organic substance).
Crganic materiale®, which form the heaviect proportion of total

— e e e e e e e e

1
cee for example W.V. purt (1956), Y.E. Otchakovsky (1G66%),
and N.G. Jerlov (1968).

2Particulate organic corbon was the substance actually tected,
and the total weight of organilc substances wes determined from
this quantity, generally by multiplyirg it py a facter cf
(a factor of 1.80 was used by o.C. Gordon).

-~
[
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particle weight for surface waters in general, remain in high
percentage even 1n deep layers; between the surface and depths
of up to 4000 m, the relative abundance of particulate organic
matter has been found to remain higher than 25% (D.C. Gordon,
1970% and to range from 40 to 60% (L.A. Hobson, 1967), 40 to
100%> (P.J. Kinney et al., 1971), 40 to 88% (C. Copin, G. Copin,
1972) and from 26 to 49% (J.E. Harris, 1972). This leads to a
choice of values close to 1 for the "mean" relative particle
index. In any case, preliminary individual indicatrix cal-
culations were performed for five index values covering a
sufficiently broad range, from the low values (1.02 and 1.05)
considered most likely up to the characteristic value of the
mineral fraction (1.15), the intermediate values chosen being
1.075 and 1.10.

There are experimental results relative to the law of
distribution, as opposed to the index. 1In particular, the use
of an electrical granulometric counter (Coulter Counter) has
made it possible to obtain new data (L.A. Hobson, 1967; R.W.
Sheldon and T.R. Parsons, 1967; K.L. Carder, 1970). The meas-
urements made by H. Bader (1970), like those by J.C. Brun Cottan

particles (C.E. Junge, 1963) seems satlsfactorily to describe
the distribution of marine particles. This counter permits
granulometric study of particles, with equivalent diameters
ranging from 1 um to 15 or 20 umu. In a number of cases the
decrease in the number of particles as the diameter increases '
follows two successive laws, one with an exponent of between

-3.3 and -3.9 within the interval 1 um to 4 or § um, and the

second, beyond this size, with a higher exponent (in absolute

value) of approximately -4 to -5.

A large number of measurements taken in very different areas
of the Atlantic and the Pacific (R.W. Sheldon et al., 1972) show
that in a very general manner, the distributions are such that
for equal logarithmic size intervals (for example from 1 to 2
um, then 2 to 4 um, then 4 to 8 Hm, ...), the volume of the
particles belonging to these classes remains roughly constant.

It may easily be verified that this property of logarithmic
equipartition of volumes is that of distribution with the
exponent =4, According to these 1nvestigators, this equipar-
tition has extended to a very broad range of sizes. For surface

319 to 55% for particulate carbon (cf. Footnote 2).

thher intervals may be studied, but corresponding to greater slzes;
1l um is approximately the lowest detection threshold for the Coulter
system. The dlameters deternined from the nmeasurements are those

of equivalent spheres, that 1is, spheres with the sane volume as the

actual particl-:s, independent of their shape.

7
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may be broken down 1into Séveral successive laws of this type.
In any case, they are convenient for computation and, as has
been seen, they may also Serve as a basis for brediction

of results in cases where othepr distributions must ke con-
Sidered (cr. Section 3.2.5, Part 2).

There are apparently no results concerning the laws ruling 45g
the distribution of particles with dimensions less than 1 um;
for those with dimensions greater than 20 MM, -m exponentia]l
laws continye to be applicable (m may become slightly greater
than 4, since the volumes for classes of increasing order have

a tendency to decrease; R.V. Sheldon et al., 1972). However
arbltrary they may be from a physical standpoint, limits must

be set to facllitate computation. Theip influence has also been
Studled, to the degree 1in which it 1s predictable. Preliminary
individual indicatrix computations have been performed for o
values ranging from 0.2 to 200, and the integrals to be computed
for polgdispersed Systems have teen computed between these
limite,

From a practical standpoint this brings us back to the
correspondence between relative Parameters a ang P and diameters
d. By way of review: o = Tdne/Aq and o = 2a(n, - 1), where g
is the diameter of the Sphere, Ao the wavelength in 3 vacuum,

Ne the refractive index of water (1.33), and Nr the relative

index of the particle in relation to water. The calculations
performed between o = 0.2 and q = 200 correspond to particles
with diameters ranging from 0.02 Hm to 20 um, when A= 419 nnm

40 um 1f ) = 838 nm. 1In addition o = g 1f Np is given the
value 1.05 when A = big nm; thls case is frequently taken as an
€xample. Thus in order to compare the varioys distributions,
these were made to coincide for o = 10 and o = 100 (Part 2,
Section 3.2.5), or for 4 = 1l and 10 pm 1r ) = 419 nm, that is,
for diameters within the range covered by the measurements.

5Computations have also been performeq between the theoretical
limit o = (zero slze) and o = ¢.> (c¢f. Appendix 2 and Sectiocn
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In order to orient comparisons of the experimental and
theoretical indicatrices, it 1s first necessary to examine how
the theoretical indicatrices vary with the index and the expone
of distribution (Chapter 1). Various comparisons are made and
probable exponent and index values are determined on the basis
of the agreement observed (Chapter 2). Various applications
for the theory are studied, in particular its use to explain
the spectral selectivity of Scattering and polarization. Con-
clusions are alsgo drawn on the different roles of various
particles and the relationships between the concentration of
the suspended material ang Scattering (Chapter 3).

1. Theoretical Variations in the Indicatrix

1.1. Influence of the Exponent of the Law of Pistribution on
the Indicatrix

Figure II.1¢2, presented 1in Part 2, has already shown the
direction in which this influence is €xerted. The difference
between the various plateauys characterizing the final indicatri
was found to vary with the eéxponent, and it is possible to
determine the manner in which it varles. The various plateaus
begin at fixed values for o which depend on the angle ¢ involve
As a result the differences are determined directly by means of
the initial gradient, which is the same for 411 the curves (no
matter what the Anglc may be) ang whese value is 7-m. This
makes it possible to calculate’ a Phenomenon which is already
Predictable from a qualitative standpoint: when large-size
particles are proportionately more abundant, that is, when m

nt

X

a.b

diminish and which, 1t wiil be remembered, are independent of
the index, except 1f the angle 6 1s small (2°, for example),
This property is demonstrated by the Rayleigh-Gans thecry
(cf. Part 2, Sections 2.2.3 and 3.2.1b).

7F‘or éxample, 1if a1 and a, are the q values fcr which, accordin
to the Rayleigh~Gans thecry, the first dark ring attains the
angles 67 and ¢ s the ratio or Scattering intensities at these
angles 1%91)/1(32) willl vary wit: the €xponent proportional to:
(a1/a5)7=m,  The corresponding values for o and 6 are given in
a table in Paps <, Cection 2.2.3.
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decreases in absolute value, the initial gradient of the curves
is stronger, the plateaus thus occur at a later stage and the
overall indlcatrix 1ls more asymmetrical. This development of
the 1ndicatrix iIs shown in Fig. III.1. It has been plotted with
the values of the integrals expressed as a function of m
(varying from 3 to 5):

oM . -
[ iple,a) o™ da ,

for various angles 6; the upper and lower limits remain constant
(0.2 and 200 respectively). The intensity at 0° serves as a
normalization value. It can be seen in this figure that the
widest variation is that ¢f the ratio 1p(2°)/2,(C°), but this
has no significance since the integral for 0° does not converge,
as nas been seen. The significant shapes are those of
curves for angles other than 0°. Thus the indicatrix (from 2°
to 180°) covers five orders of magnitude for the exponential
value -3 and three orders for the value -5. Another point which
wlll be seen to have some importance may be noted: between the
exponential values -3 and -4, the various curves remain approxi-
mately parallel. This indicates that within this range the
indicatrix is not very sensitive to variations in the law of
distribution, at least for "mean" angles (since the 180° ang.le
1s an exception to some degree, and no statement can be

made for the 0° angle).

Some consideration should also be given to cases in which
the distribution, rather than following a single law, follows a
law in which the exponent successlvely assumes t{wo values m
and mp. As has been observed, the second value is greater %1n
absolute value) than the first; it corresponds to the law
applylng to particles with a diameter greater than 5 um (that 1is,
o > 50). In reality, the integrals for the various angles,
except for 0°, have virtually reached their asymptotic value
at a = 50 (see Fig. III.2). As a result, the fact of whether
the particles are distributed azcording to a -my or -mp law
beyond a value of 50 for the a parameter has no influence on
the final form of the indicatrix, except for the value at 0°.
Flgure III.2 manifestly shows thils fact: indicatrices correspond-
ing to populations extending from om = 0.2 to ay = 200 or fron
am = C.2 to ay = 50 are plotted for two index values; within
the latter a range it 1s obviocus that beginning with a = 50,
the second exponent mp becomes infinite. The indicatrices
virtually coincide, except at 0°. 1In conclusion, with the
laws of distribution considered, large particles play a small
rcle and the more or less heavy depletlon of these particles

(more or less high m2) has 1ittle effect on the shape of the
Indicatrix.




1.2. Influence of the Index of Refraction on the Indicatrix /43

The value of the exponent influences the shape of the
resulting lndicatrix, but the shape of the individual 1indica-
trices involved in integration, on the other hand, 1s governed
by the value of the index of refraction. Figure III.3 furnishes
an example cof this influence: the exponent being fixed (m = 3.5),
the ratios 1p(8)/17(0°) are given this time as a function of
the index, and the upper and lower limits of the Integrals
retain the same values as previcusly (0.2 and 200). It was
pointed out in Part 2 (Sections 2.2.5 and 2.2.6) that the
influence of the index for individual indicatrices is virtually
restricted to extreme ranges of small angles (0° to 10°) or
large angles (in the vicinity of 180°). The summations per-
formed do not change this property, permitting the following
observatiors:

—— the overall asymmetry of the indicatrix decreases as
the value of the index increases. Thus the ratio of
scattering intensities at 2° and 140° corresponds to
six orders of magnitude when n = 1.02 and only four
orders if n = 1.15.

-- however, it may be found that this varliation in asym-
metry is virtually solely attributable to variations
in the ratio ip(10°)/im{2°). On the other hand, the
curves for angles ranging from 10° to 140° (and even
the curve for 160°, which is not shown) remain appre-
ciably parallel, and as a result the "mean" region
(10° to 160°) of the indicagrix depends very little
on the index of refraction.

-- finally, the curve corresponding to an angle of 180°
shows that in r~elative value, backscattering becomes
more marked as the index increases (as a result of the
increase in the reflection factor).

It now may be noted that on the basis of the preceding
findings, criteria exist which at least theoretically would make
it possible to derive a rational value for the index from the
measurements. The ratio of scattered intensities at 2° and 10°
is a criterior. of some lmportance, especlally if the index varles
between 1.02 and 1.075; for the higher values, 1.075 and 1.1¢%,
backscattering would constitute another criterion (unforturately
pocrly sultel for experimental use). Another detall revealed
8it is not possible to generalize this finding; thls property
s linked to the index values considered, which are close enough
to 1 to make the Rayleigh-GCans approximaticn valid ard applicable
(cf. Part 2, Secticn 2.2.3).

81

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR




-
9 =0"

W} s—e—— g s —— .
r_,_ffa—""""""————‘ by the complete
0'h - . indicatrix curve may
UELIE . ,,,,»—"””’ also serve as a
b 1@ " criterion: this 1is

—— //,,/’ . the fact that a
20° - ’/’,,z"'

w0l Pt . i slight relative
——"T /////’ maximum may be noted

. 0 .~ whose angular

w't

e /A/,/" ) position is directly
- 7 linked to the value

Wit 920" 1 of the index (about

180" = - ¢
. :ﬁL»»::ﬁ%%f/ & INDICE 105 60° for n = %.05
- 1 and about 85° for
: b . n=1.10; Fig.
. , FXPOSNT— , 111.2).9 The maxi-
3.0 -35 -40 45 -50 mum becomes more
pronounced as the
Fig. III.1. Influence of the exponent calculations take
of the law of particle distribution on larger particles into
the indicatrix; the index of refraction account, since only
is 1.05. The size parameters correspond- these particles are
ing to the limits of distribution are capable of producing
0.2 and 200. this effect.
Key: a. Index From a practical
b. Exponent standpoint, measure-

ments of 1ndicatrices
have seldom been

performed with a sufficiently small angular interval for this
phenomenon to be definitely shown., It may be noted, however, that
the mean indicatrix cbtained by Jerlov (1661) and that given by
Otcohakovski (1965) prssess a sharp convexity toward 60 to 70°
(which would correcpond to an index of approximately 1.05). A
device continuously recording the scattering coefficient as a
function of the angle would make 1t possible to determine whether
this effect is more or less permanent and thus whether it is
possible to use 1t to determine a mean refractive index. In this
respect, the indicatrix determinaticns made by J. W. Reese and
S. P. Tucker (1970) show that a slight maximum occurs very
frequently between 55° and 75°.

The problem remains, whether it is possible to determine
criteria for the exponent sirllar to those which have Just been
indicated for the index. Referring again to Fig. III.1l, one
finds that the total anplitude of the tndicatrix is a pricrl the
quantity which truly varies with the exponent. However, fcr the

m

reasons of non-convergence already given, the value at G° cannot

9 See also the indicatrices given in Appendix II. The equaticn
linking the index wilth the angle at which this enerygy corrcentra-
tinn occurs has teern shcwn in a graprh (part 2, Fig. II.Z).
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T e=d-' . ' J be taken 1nto con-

10° . sideration. In addi-
4 . tion, as has Jjust been
o T 1 seen, the angular
iy(0) v range 2 to 10° 1is
o ':ET o ] particularly sensitive
‘///f””‘jg”_,_————”' to the value of the
o . ! index. Use of the ratio
ot ’/”’/E“”,,,——" of intensities at
g /////2///, - J—— 2° and 140° to define /44
. =7 L the amplitude would re-
////’ .Jgi,:::::::::‘ sult in a magnitude for
5 £ | which the influence of
/’//// 140 the exponent could not
0%} ’//;/” & EXPOSANT 4 be distinguished from
. mEss that of the index. On
| ) the other hand, as
INDICES — B shown by Fig. III.3,
. ' — ' the ratio 1(10°)/1(140°)
1.02 1.05 1075 110 1.15

is virtually independent
of the index. The
amplitude of the indl-
catrix, which 1is no

Fig. III.3. 1Influence of the index

of refraction on the 1indicatrix; the

exponent of the law of distribution longer total but

is =-3.5. The size limits are restricted to the range

unchanged. 10° to 140°, might

Key: a. Exponent well constitute the
criterion cdesired.

1.3. Conclusions To Be Drawn from Theoretical Variations in the
Indicatrix

An initial conclusion may be drawn from the precedlng. This
is the fact that when the index of refractlon varles within
relatively broad limits, the scattering indicatrix undergoes little
change, at least with reference to the "mean" angles (10° to 140°,
to set these values); the same 1s true when the exponent of
distribution varies, although this occurs within slightly
narrower limits (from approximately -3 to -4). This may constl
an initial explanation for a finding which has been made experimentally:
the low value of the indicatrix for marine particles. (It may
be noted that this fact nhas been established primarily on the
basls of measurements at mean angles. This explanation will be
expanded and discussed in more detail in the fecllowing chapter.
The case of small angles where the variability 1s greuter will
also be examlned.

2. Interpretation of Observations and Applications

It should first be shown that the relatively ncn-variable
treoretical indicatrices which have just bteen mentioned do

g3
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Fig. III.2. The curves show1 as unbroken

lines correspond to indicatrices calcu-
lated for size limits of oy = 0.2 and
apM = 200; for the indicatrices shown as
dotted lines, the upper limlt oM has
been lowered to 50, Positioning of the
curves marked 1, relative to the index
1.05, and 2, relative to the index
1.10, is arbitrary. On the other hand,
in each of these two cases, the dotted
line curve and the unbrcken line curve
are correctly placed in relation to
each other, in such a way that the
total scattering coefficlent 1s the same
(that is, they are correctly placed 1if
the angular coefflclents are considered
to be normalized). The crosses and tri-
angles correspond to the horizontal
polarized component 12, when ay = 200
or when ay = 50, respectively; the dots
correspcend to the vertical component
1, without any distinction between the
values cbtained 1In the two cases,

Key: a. Exponent
b. Index
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coincide with the
experimental in-
dicatrix; subsequently
an attempt will be
made to determine
whether some varia-
tions within the range
of possible variations
more accurately
represent the
experiment. This
procedure may make

it possible to

derive probable
values for the

index of refraction
and the exponent of
distribution.

To make com-
parisons, use will
be made (Section 2.1)
of those properties
-=- such as the
ratios B(10°)/8(2°)
and B(140°)/B8(10°) --
which have been
found to vary suffi-
ciently, either with
the index or with
the exponent, to
be able to serve as
criteria. Ratios
of angular coeffi-
clents to the total
coefficient will
also be used (Section
2.2), that is, nor-
mallized coefficients
B(6), whose values
depend conjointly
on the index and the
exponent. If the
experimental varia-
bility of these
ratics 1s found to
be smaller than the
thecretical varia-
bility, this will
indicate that actual
incices and expo-
nents var; withir a




a more limited range than that considered for the computations.
Each broperty will result in the delimitation of a range of this
type; 1if all these ranges are compatible or at least have one
part in common, one may expect to deduce rational values for the
index and the €Xponent from the experiment. Indicatrices cal-
culated with these values are compared to the experimental
indicatrix (Section 2.4),

Methods for evaluating the total scattering coefficient on
the basis of angular measurements have been broposed by various
investigators. Examination of the theoretical variability of 3

2.1. Application of Criteria to the Index and the Exponent of
the Law of Distribution. Ratio of Angular Coefficients

As has been seen (Section 1.2), the ratio of scattering
coefficients at 10° ang 2° is much more sensitive to variations
in index than variations in exponent; inversely, the ratio of
coefficients at 140° and 10° is dependent almost exclusively on

the exponent; the index and exponent varic! Jes are Separated to

the two variables considered are given in Fig. 3.4, Experimental
values for the same ratios are listed in Table 1. Relatively
few measurements were performed conjointly at 2° ang 10° or at
10° and 140°, 1np addition, for their use here, the neasurements
taken at 140° hag to be expressed in absolute values so that the
proportion due to molecular Scattering, which is frequently sub-
stantial, could be Subtracted; only on this condition is the
ratio g(140°)/8(15°) physically significant. Use of the vglues
2°107¢ and 5.5:10-2 to set experirental limits for variations

in the ratio B(10°)/B(2°) ang transfer of these values to the
graph (III.L) of theoretical variations results in a range
being defined by intersection. This corresponds to the combined
values for both the index and the €xponent, for which the calcu-
lations represent the experiment, Due to the vVery nature of
this criterion,this range leaves the eéxponential values un-
determined, but restricts the possible values for the index; it
thus appears necessary to set aside any values outside the
interval 1.02 to 1.06, In the Sane manner, choosing the experi-
mental values 0,6:10-3 and 2.3-10-3 as limits for the second
ratio, another range may te determined which gives little 1in-
formation on the Index (less than 1.10, however), but stipulates
the values for the exponent; for eéxample, if the incdex is
assured to be equai to 1.05, the exponential values compatible
wlth the experimental results are approximately -=3,8 te -4,3,

For the sake of clarity, the two ranges defined in this way
are glven on an m-m diagram (that 1s, one whose ccordinates =are

1)
\n
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